

P.O. Box 40197 • Lafayette, LA 70504-0197 Office: (337) 482-5396

Fax: (337) 482-5059

October 19, 2023

ADDENDUM NO. 1

PROPOSAL FOR FURNISHING A GRID TESTING FACILITY (GTF) FOR PURPOSES OF TESTING AND TRAINING THIS PROJECT WILL INCLUDE THE PARTIAL DEMOLITION OF EXISTING EQUIPMENT, INSTALLATION OF NEW EQUIPMENT, AND THE INTEGRATION OF EXISTING AND NEW EQUIPMENT IN THE BID SPECIFICATIONS.

Due Tuesday, October 31, 2023 2:00PM Solicitation No. 24012

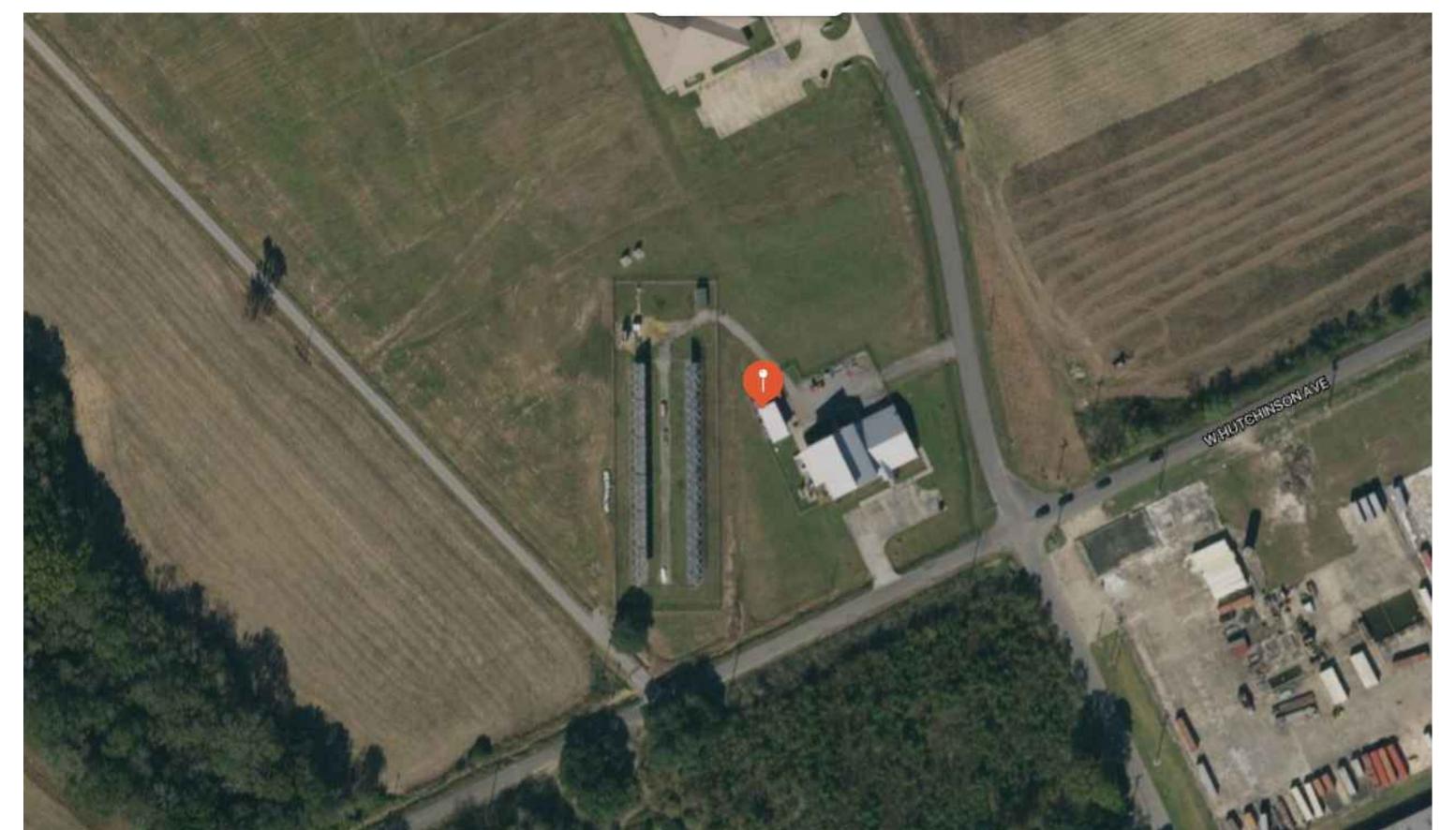
The following clauses/alterations shall be made part of the original specifications as though issued at the same time and shall be incorporated integrally therewith.

Item No. 1 – Responses to vendor questions:

Vendor question:	Department response:
exploring the invitation to bid. We were wondering if you already had a contact	We spoke with the ETAP contact below about this project, but he did not help design the microgrid, develop the specs, or create the scope of work. The ETAP contact is below:
idevelop the scope of work/design the	ETAP R&D - Dr. Ahmed Y. Saber, SMIEEE (VP Optimization and AI) ahmed.saber@etap.com (949) 900-1079 direct (949) 900-1000 main
	Please note that you are not required to consult with ETAP prior to preparing a bid.
	Also, remember that changes to specifications must be in writing in the form of an addendum.

<u>Item No. 2</u> – Design drawings from the electrical contractor bid package, as part of this bid package so that the microgrid controller contractor will understand the design of the microgrid that they will be controlling with the equipment procured under this bid package.

Please see attached.


For questions related to bidding these projects, please contact the UL Lafayette Purchasing Department at martina.howard@louisiana.edu or 337.482.1079.

Business hours are: Mon-Thu 7:30am – 5:00pm CST (lunch 11:45-12:30); Fri 7:30am -12:30pm.

ACKNOWLEDGEMENT: If you have already submitted your bid, and this Addendum creates a need to revise your bid, you must indicate any change(s) below, identify your business name and sign where shown. Revisions shall be submitted/delivered PRIOR to bid due date and time, by email. Bid revisions received after bid due date and time cannot be considered, whereupon the bidder must either honor or withdraw its original bid. If you have already submitted your bid and this addendum does not cause you to revise your bid, acknowledge receipt of this addendum by signing below and returning it to the Purchasing Department prior to bid due date.

Firm Name:	Signature:	
Department of Purchasing		
University of Louisiana at Lafayette		
Assistant Vice President for Administration & Finance		
Marie C. Frank, MPA, CPPB		

Overhead View

UNIVERSITY OF LOUISIANA AT LAFAYETTE-CLECO ALTERNATIVE ENERGY CENTER

ISLANDING MICROGRID SYSTEM

2008 HUTCHINSON AVE. CROWLEY, LA 70526

PV System Size: 50 kWDC First Solar Module Manufacturer: Module Model: FS-6380A 132 Module Quantity: String Quantity:

Inverter Manufacturer: DynaPower Inverter (Qty) Model: (1) MPS-125 EHV 480V 3P

Battery Manufacturer: Blue Planet Energy Battery System: 128 kWh Battery

Electric Vehicle

Service Equipment [EVSE] ChargePoint CPE100 Series • Facility Grid Contactor

Scope of Work Summary

Partial demolition of existing equipment and installation of new equipment Integration of existing generation sources and loads into AC bus Microgrid upgrade including:

- 50kW Ground-Mounted PV Array Installation
- Energy Storage System Battery and DC/AC Inverter
- AC Source Bus
- AC Test Load

• Microgrid Controller

SOLAR

5804 River Oaks Rd S Elmwood, LA 70123 1-504-267-1660

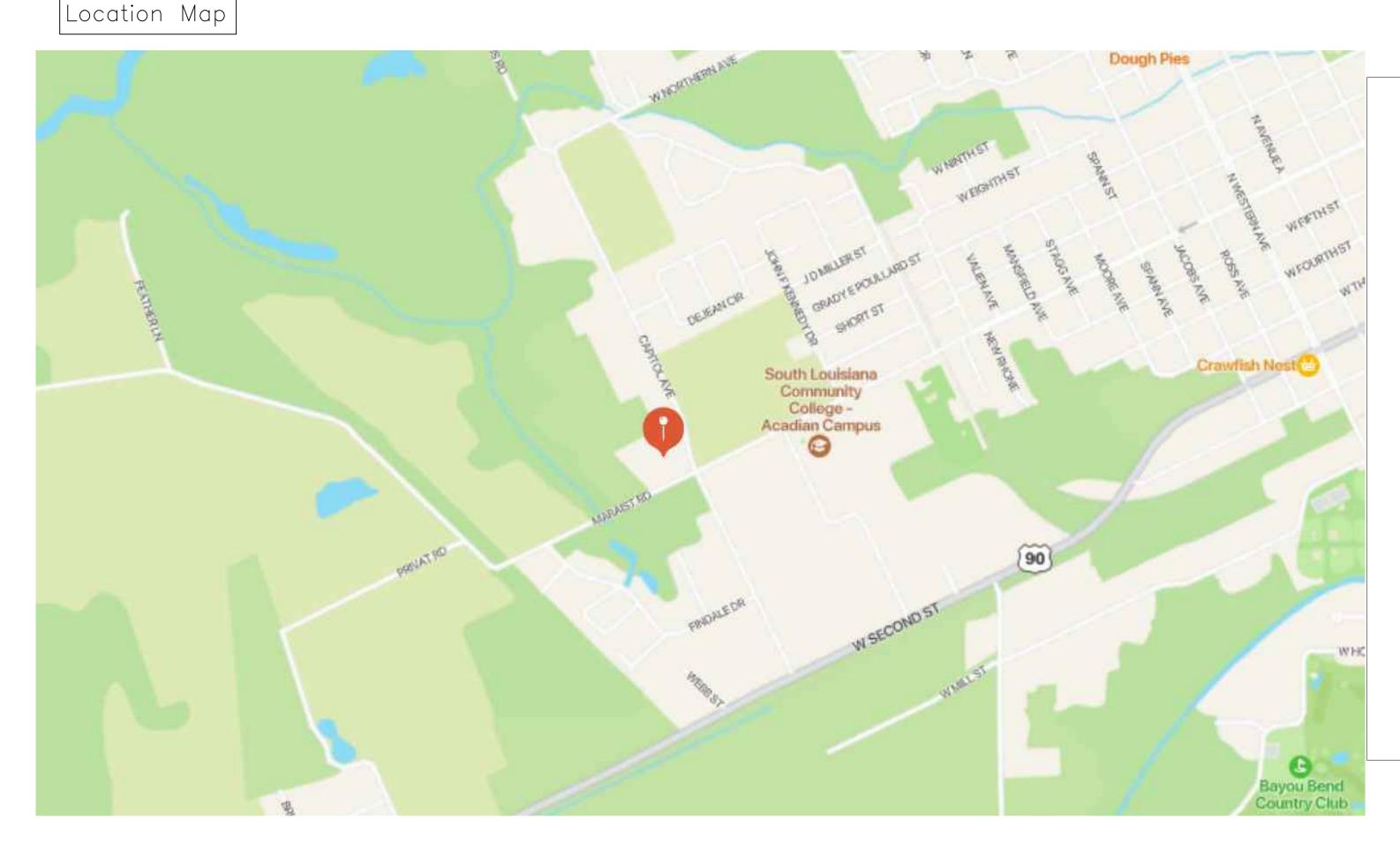
General Notes MICROGRID SYSTEM

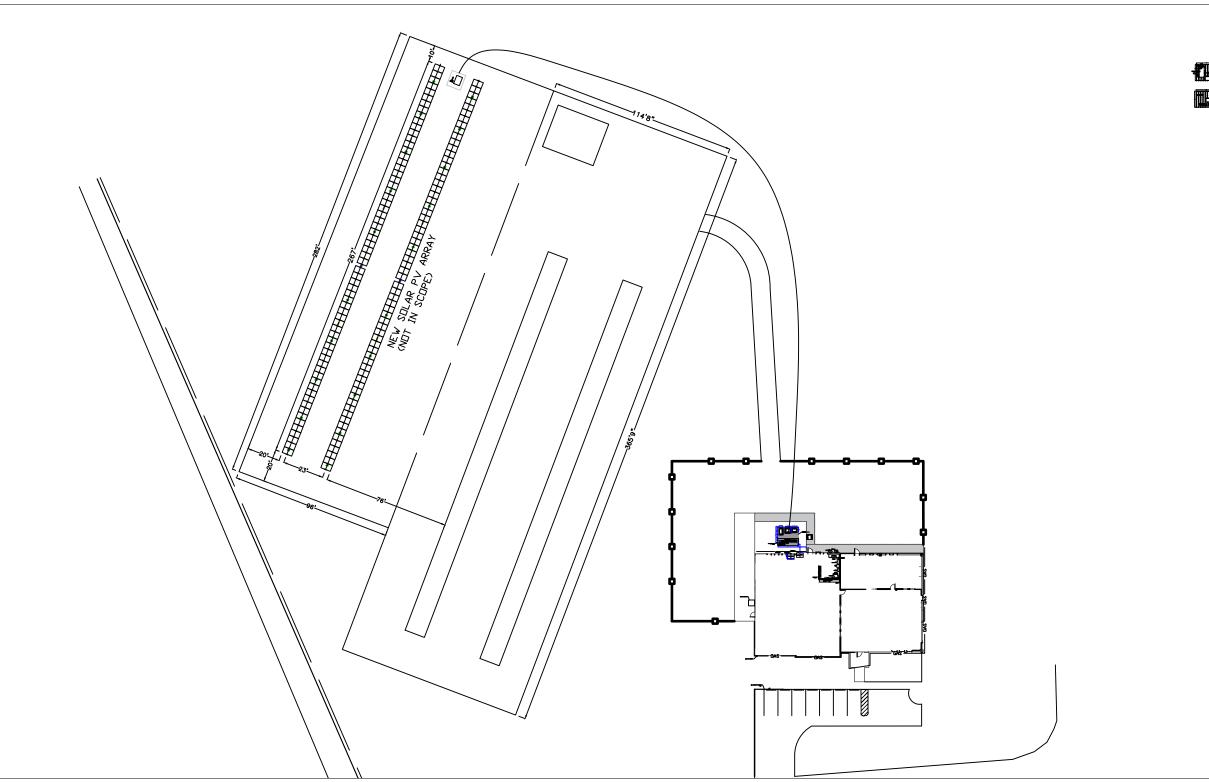
TABLE OF CONTENTS PV-1.0 COVER PAGE PV-1.1 GENERAL NOTES PV-1.2 REFERENCE PV-2.0 SITE PLAN PV-3.0 SOLAR PLAN PV-3.1 STRING PLAN

WITH GROUND MOUNT PV

PV-3.2 SOLAR COMPONENTS PV-3.3 SOLAR COMPONENTS PV-3.4 SOLAR COMPONENTS PV-5.0 EQUIPMENT PLAN

PV-5.1 PAD LAYOUT PV-5.2 PAD DETAILS


PV-5.3 EQUIPMENT ROOM DETAIL PV-5.4 EQUIPMENT ROOM ELEVATION PV-5.5 EQUIPMENT ROOM ELEVATION PV-5.6 EQUIPMENT ROOM ELEVATION


PV-5.7 OUTDOOR WALL ELEVATION PV-6.0 ELECTRICAL DIAGRAM PV-7.0 ELECTRICAL CALCULATIONS

PV-8.0 COMMUNICATIONS DIAGRAM PV-9.0 PANELBOARDS

PV-10.0 EQUIPMENT DATA SHEETS

|System Plan

Revisions			
No.	Issue	Date	
110822	REVIEW		
120222	REVIEW		
121222	REVIEW		
122022	REVIEW		
090823	BID SET		
092023	PAD UPDATE		

Project Name and Address

UNIVERSITY OF LOUISIANA AT LAFAYETTE-CLECO POWER 2008 HUTCHINSON AVE CROWLEY, LA 70526

Drawn	Ву		
Andrea	Lee,	Nick	Boyd
Date	09/	15/20	022
Scale			

Electrical Notes

The contractor shall obtain all necessary certifications for work installed, pay all related fees and charges, and deliver all certificates and inspection approvals to the owner before his work will be considered complete.

All work shall be in accordance with the National Electrical Code (NEC) and all materials shall be OSHA Nationally Recognized Testing Laboratory (NRTL) or Underwriters Laboratories (UL) labeled.

All new equipment shall have an interrupt rating (kAIC) greater than or equal to the existing equipment.

All inverters shall be IEEE 929 compliant and be inspected by the local utility before commissioning, testing, and operation.

Installation

Installer/subcontractor shall have a NABCEP PV Technician certification or equivalent, and should have successfully completed at least two other nonresidential solar PV projects of equal or greater size and complexity.

All work shall be installed in a first class and neat manner by those skilled in the trade involved. All details of the installation shall be electrically and mechanically correct.

Torque and mark all racking and mechanical lugs.

Conductor Installation

PV system conductors shall be identified per NEC 690.31(B).

THHN/THWN-2 insulation is acceptable for aluminum MC Cable. For aluminum conductors XHHW-2 shall be used.

Compression lugs shall be used on all aluminum cable terminations. Mechanical lugs may only be used for copper cable terminations.

Noalox to be used with all aluminum lugs.

Install wire and cable in accordance with the NEC, the National Electrical Contractors Association's (NECA) "Standard of Installation", and the Manufacturer's installation instructions. The installation shall be in accordance with recognized industry practices and the local authority having jurisdiction.

String wiring and homeruns shall be secured to the underside of the modules and racking using Sunbundler-type PVC coated stainless ties outdoor rated for UV. Outside of array, transition to EMT conduit.

The use of wire splices is prohibited (except in order to relocate LP-1).

Wire lube is required for wire pulls through conduit runs of 20' or longer, or with bends in 180° or more. Wire lube is required even when using self lubricating cables.

Raceways and Conduit

Raceway sizes shall be no less than 3/4" in diameter.

PVC conduits shall be schedule 80.

Conduit shall be EMT where not subject to physical damage. Conduits shall be IMC or RMC where subject to physical damage. PVC conduits are only permitted in below grade duct banks. Rooftop locations are considered subject to physical damage.

All rooftop conduit shall be marked per local fire codes.

All penetrations shall be sealed to maintain the existing fire rating.

EMT conduit shall use properly installed, factory-stamped raintight compression connectors.

Drawings show raceway locations, but contractor may adjust to suit field locations.

Conduit elbows shall be of the same make, quality, and finish as the conduit used.

Apply two protective coats of asphaltum compound for any galvanized steel conduits directly buried in earth.

Provide expansion fittings with bonding jumpers for every 100' of straight conduit run. Conduit expansion and deflection fittings with bonding jumpers shall be used whenever crossing building expansions.

Leave wire sufficiently long to permit making final connections.

Conduit over 10' in length shall be provided with synthetic pulling rope.

A bucket 15" wide or less shall be used for trenching.

All conduit trenches must be minimum of 18" or as required by code, and use detectable underground warning tape.

Repair surfaces damaged by trenching to match previously existing conditions.

Phase Relationship

Connect feeders to preserve phase relationship throughout the system. Phase legs of feeders shall match bus or cable arrangements for all connected equipment. Color coding shall be as follows:

-600 VAC, 1000 VDC, 1500 VDC
-Ungrounded Positive Conductor: Red
-Ungrounded Negative Conductor: Black
-AC and DC Systems:
-Grounded Conductor: White

-208/120 VAC

-Ground: Green

-A Phase: Black, B Phase: Red, C Phase: Blue

-277/480 VAC

-A Phase: Brown, B Phase: Orange, C Phase: Yellow

Color coding must be used consistently for the entire project. Where color coded cable is not used, tape conductor with overlapping colored tape.

Enclosures

Outdoor electrical enclosures shall be rated NEMA 3R, 4, Or 4X. Indoor enclosures shall be rated NEMA 1. All electrical equipment shall be listed or labeled by a recognized testing agency.

Panelboard doors shall be quarter turn latches or external handle with internal latches only.

Penetrations or cable entries in the top of outdoor enclosures are not permitted. Enter outdoor enclosures from the bottom or side.

Conduit terminating in outdoor enclosures shall use Myers-type hubs including a ground screw. Use raintight fittings for all cable entries.

Arc flash hazard warning labels shall be mounted on every combiner box, terminal box, inverter, AC and DC switch, transformer, and switchgear.

Handholes, pull boxes, or conduit bodies shall be installed when the raceway has more than 360° of bends, or as necessary to not exceed manufacturer's maximum cable pulling tension.

Grounding

The contractor shall furnish and install grounding in accordance with the National Electrical Code.

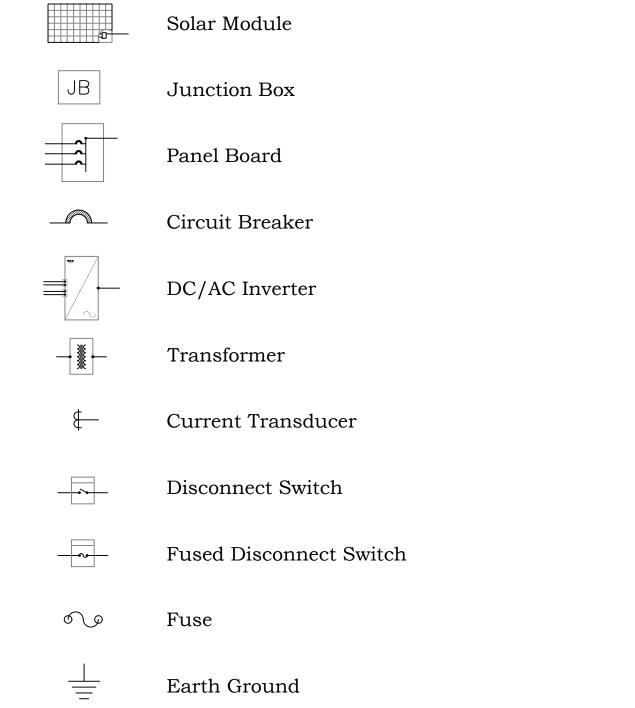
Tests

Final tests shall be held in the presence of owner's representatives and to their satisfaction.

Megger all string wiring, combiner box output feeders, and AC feeders to ensure quality installation and submit results to owner for review.

General Notes

The general notes apply to all solar-related "PV" numbered drawings under the contract. Refer to individual drawings for any additional notes.


The drawings indicate general arrangement of systems and work. Follow drawings in laying out work and verify space conditions. Maintain headroom, working conditions, and required clearances.

The PV system contractor shall coordinate all work with the engineer, the construction manager, and any other contractors to ensure that the PV system is installed as specified in these drawings.

Personal Protective Equipment (PPE) shall be used in accordance with NFPA 70E and OSHA requirements.

Unforeseen obstructions may require a change to the array layout. Changes to the array layout should be made as to not change the number of modules on a inverter.

Legend - Symbols

Adopted Codes

Adopted National Electrical Code Version:	2020
Adopted International Building Code Version:	2021
Adopted International Fire Code Version:	2015
Adopted International Mechanical Code Version:	2021
Adopted International Residential Code Version:	2021

ASCE/ANSI 7-10 Minimum Design Loads for Buildings and Other Structures

Authority Having Jurisdiction:City of CrowleyUtility:Cleco Power

Have a single labeled manual disconnect for the entire renewable facility at a service, approved by the utility on the outside (available to

Be able to synchronize with the utility and stay synchronized

Have safety measures that prevent the generator from feeding electricity to the utility when the line is non-energized, or in an abnormal voltage or frequency situation or cause a degradation of the safety or quality of power on the electrical grid (i.e. UL1741 listed inverter).

Obtain all permits required by local authorities.

Cleco 24 hours a day with no notice).

Abbreviations

118816 114610115	
Diameter or Phase	Ø
Amperes	A
Arc Fault Circuit Interrupter	AFCI
Amps Interrupting Capacity	AIC
Automatic Transfer Switch	ATS
American Wire Gauge	AWG
Circuit Breaker	BKR
Conduit	C
Combiner Box	CB
Current Transducer	CT
Circuit Breaker	CKT
Control Panel	CP
Copper	CU
Disconnect	DISCO

Electric, Electrical ELEC **EMERG** Emergency **EMT Electrical Metallic Tubing EQUIP** Equipment EXIST Existing Ground G, GND GEC Grounding Electrode Conductor **GFCI** Ground-Fault Circuit Interrupter GFPE Ground-Fault Protection of Equipment HID High-Intensity Discharge (Lightning) HzHertz IMC Intermediate Metallic Conduit kAIC 1000 Amps Interrupt Capacity kCMIL 1000 Circular Mils kVA Kilo-Volt Ampere kW Kilowatt LA Lightning and Surge Arrestor LTG Lightning Long, Short, Instantaneous, and Ground Fault LSIG Maximum MAX MCP Main Control Panel Manufacturer MFG MLO Main Lugs Only MIN Minimum National Electrical Manufacturers Association NEMA NTS Not To Scale Pole Power Factor Programmable Logic Controller PLC PRI Primary Polyvinyl Chloride PVC PWR Power **RCPT** Receptacle Rigid Galvanized Steel Conduit RGS RMC Rigid Metal Conduit SEC Secondary SCCR Short-Circuit Current Rating Surge Protection Device SPD Supply Side Bonding Jumper SSBG SW Switch TBD To Be Determined TYP **Typical** Volt VA Volt-Ampere Watt

Weatherproof

Transformer

Equipment Grounding Conductor

EGC

5804 River Oaks Rd S Elmwood, LA 70123 1-504-267-1660

General Notes

MICROGRID SYSTEM
WITH GROUND MOUNT PV

TABLE OF CONTENTS PV-1.0 COVER PAGE PV-1.1 GENERAL NOTES PV-1.2 REFERENCE PV-2.0 SITE PLAN PV-3.0 SOLAR PLAN PV-3.1 STRING PLAN PV-3.2 SOLAR COMPONENTS PV-3.3 SOLAR COMPONENTS PV-3.4 SOLAR COMPONENTS PV-5.0 EQUIPMENT PLAN PV-5.1 PAD LAYOUT PV-5.2 PAD DETAILS PV-5.3 EQUIPMENT ROOM DETAIL PV-5.4 EQUIPMENT ROOM ELEVATION PV-5.5 EQUIPMENT ROOM ELEVATION PV-5.6 EQUIPMENT ROOM ELEVATION PV-5.7 OUTDOOR WALL ELEVATION PV-6.0 ELECTRICAL DIAGRAM PV-7.0 ELECTRICAL CALCULATIONS PV-8.0 COMMUNICATIONS DIAGRAM

PV-9.0 PANELBOARDS

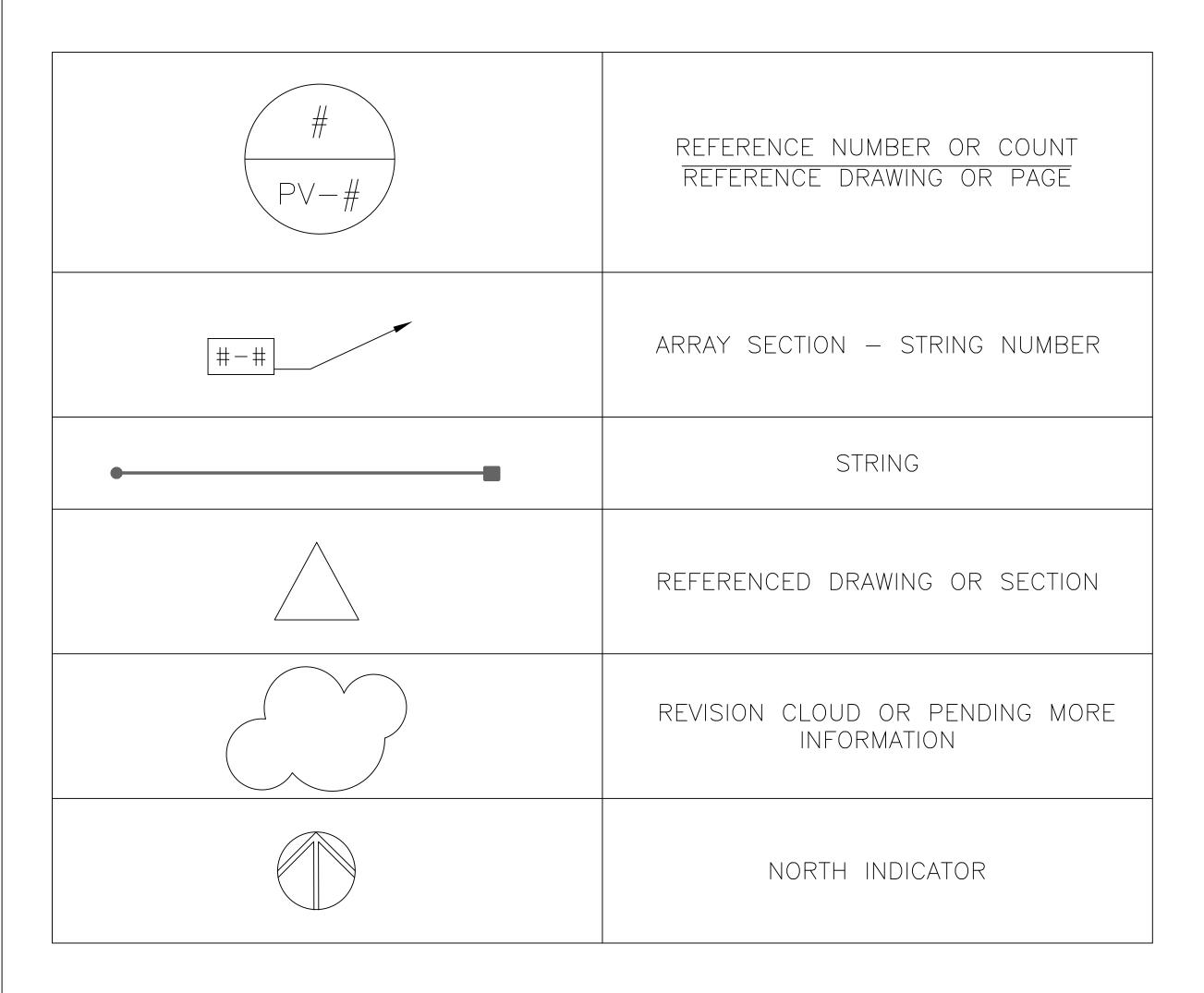
	Revisions	
No.	Issue	Date
110822	REVIEW	
120222	REVIEW	
121222	REVIEW	
122022	REVIEW	
090823	BID SET	
092023	PAD UPDATE	

PV-10.0 EQUIPMENT DATA SHEETS

Project Name and Address

UNIVERSITY OF LOUISIANA AT LAFAYETTE—CLECO POWER 2008 HUTCHINSON AVE CROWLEY, LA 70526

Drawn By
Andrea Lee, Nick Boyd


Date 09/15/2022

WP

XFMR

LEGEND	- GENERAL
	LIGHT LINES INDICATE EXISTING OR BEYOND THE PROJECT SCOPE
	DARK LINES INDICATE NEW OR WITHIN THE PROJECT SCOPE
	DASHED LINES INDICATE EQUIPMENT INSTALLED AT A LATER DATE
TEXT	LIGHT TEXT INDICATES EXISTING OR BEYOND THE PROJECT SCOPE
TEXT	DARK TEXT INDICATES NEW OR WITHIN THE PROJECT SCOPE

LEGEND - SYMBOLS/ANNOTATIONS

5804 River Oaks Rd S Elmwood, LA 70123 1-504-267-1660

General Notes

MICROGRID SYSTEM
WITH GROUND MOUNT PV

TABLE OF CONTENTS
PV-1.0 COVER PAGE
PV-1.1 GENERAL NOTES
PV-1.2 REFERENCE
PV-2.0 SITE PLAN
PV-3.0 SOLAR PLAN
PV-3.1 STRING PLAN

PV-3.2 SOLAR COMPONENTS
PV-3.3 SOLAR COMPONENTS

PV-3.4 SOLAR COMPONENTS PV-5.0 EQUIPMENT PLAN

PV-5.0 EQUIPMENT PLAN PV-5.1 PAD LAYOUT

PV-5.2 PAD DETAILS
PV-5.3 FQUIPMENT ROOM

PV-5.3 EQUIPMENT ROOM DETAIL
PV-5.4 EQUIPMENT ROOM ELEVATION

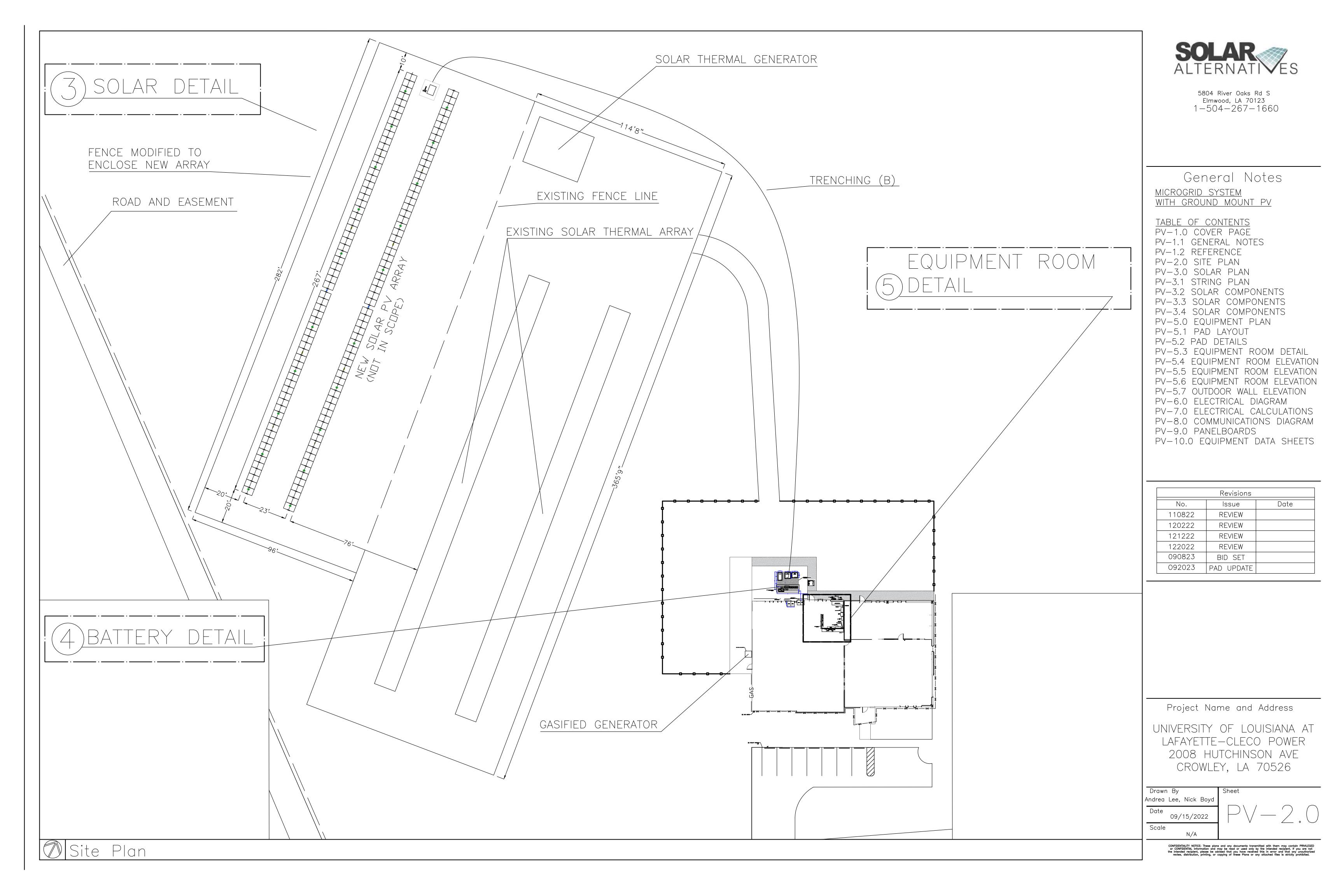
PV-5.5 EQUIPMENT ROOM ELEVATION PV-5.6 EQUIPMENT ROOM ELEVATION PV-5.7 OUTDOOR WALL ELEVATION

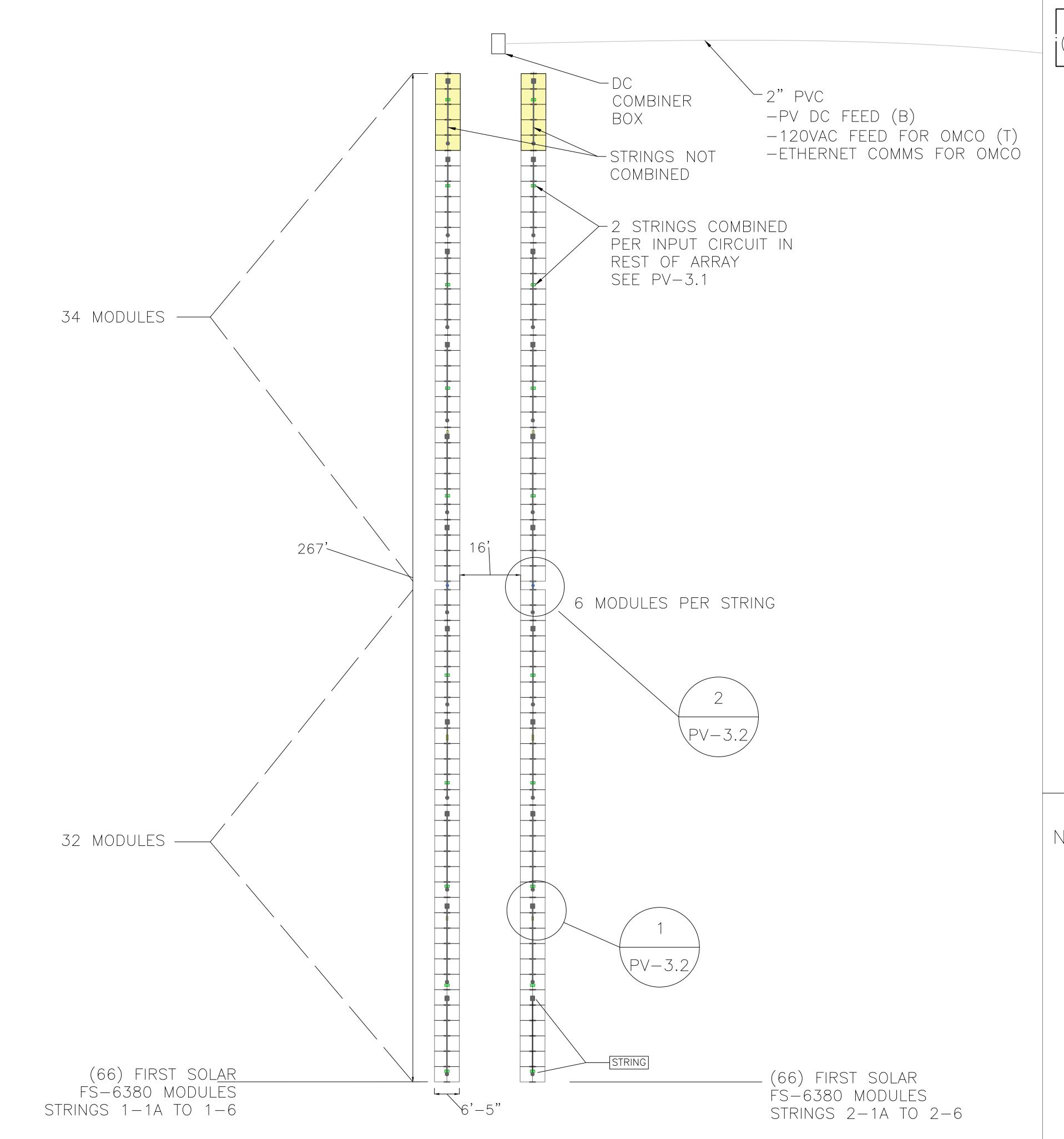
PV-5.7 OUTDOOR WALL ELEVA PV-6.0 ELECTRICAL DIAGRAM

PV-7.0 ELECTRICAL CALCULATIONS PV-8.0 COMMUNICATIONS DIAGRAM PV-9.0 PANELBOARDS

PV-10.0 EQUIPMENT DATA SHEETS

	Revisions	
No.	Issue	Date
110822	REVIEW	
120222	REVIEW	
121222	REVIEW	
122022	REVIEW	
090823	BID SET	
092023	PAD UPDATE	
	110822 120222 121222 122022 090823	No. Issue 110822 REVIEW 120222 REVIEW 121222 REVIEW 122022 REVIEW 090823 BID SET


Project Name and Address


UNIVERSITY OF LOUISIANA AT LAFAYETTE—CLECO POWER 2008 HUTCHINSON AVE CROWLEY, LA 70526

Drawn By Andrea Lee, Nick Boyd

Date 09/15/2022

Scale

DC COMBINER BOX 1) RACK DETAIL

ATTACH STRUT RACKING

WITH 2" U-BOLT

5804 River Oaks Rd S
Elmwood, LA 70123
1-504-267-1660

General Notes MICROGRID SYSTEM WITH GROUND MOUNT PV

TABLE OF CONTENTS
PV-1.0 COVER PAGE
PV-1.1 GENERAL NOTES
PV-1.2 REFERENCE
PV-2.0 SITE PLAN
PV-3.0 SOLAR PLAN
PV-3.1 STRING PLAN

PV-3.2 SOLAR COMPONENTS
PV-3.3 SOLAR COMPONENTS
PV-3.4 SOLAR COMPONENTS

PV-5.0 EQUIPMENT PLAN PV-5.1 PAD LAYOUT PV-5.2 PAD DETAILS

PV-5.3 EQUIPMENT ROOM DETAIL
PV-5.4 EQUIPMENT ROOM ELEVATION
PV-5.5 EQUIPMENT ROOM ELEVATION
PV-5.6 EQUIPMENT ROOM ELEVATION

PV-5.7 OUTDOOR WALL ELEVATION
PV-6.0 ELECTRICAL DIAGRAM
PV-7.0 ELECTRICAL CALCULATIONS

PV-8.0 COMMUNICATIONS DIAGRAM PV-9.0 PANELBOARDS PV-10.0 EQUIPMENT DATA SHEETS

Revisions

No. Issue Date

110822 REVIEW

120222 REVIEW

121222 REVIEW

122022 REVIEW

BID SET

PAD UPDATE

090823

092023

NOTE:

1. INSTALLATION OF RACKING AND MODULES BY OTHER CONTRACTOR (NOT IN SCOPE)

—— 24" ——-|

<u></u>CONDUIT

AS NEEDED

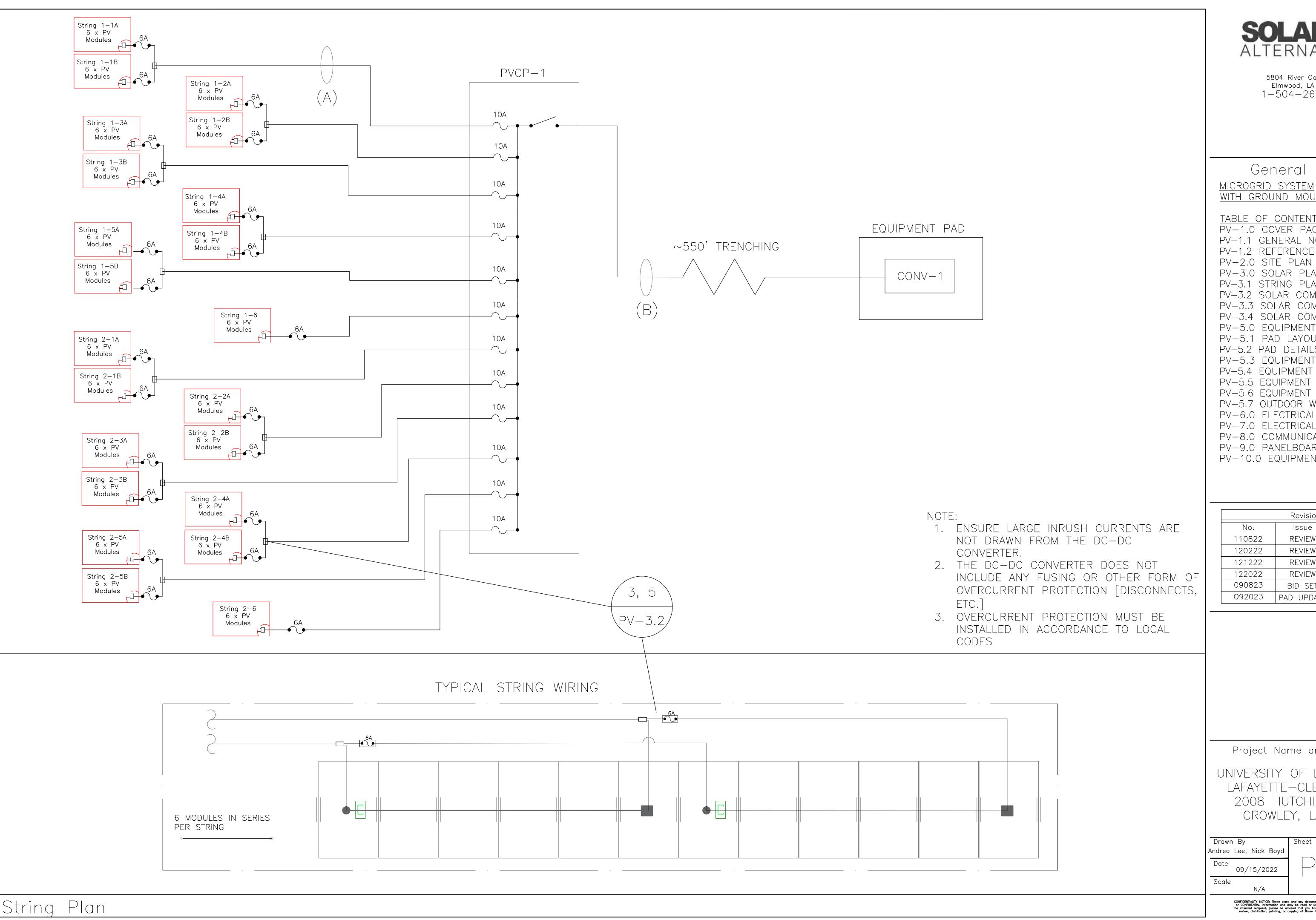
POST ENCASED IN CONCRETE FOOTING

EQUIPMENT WEIGHT:

2" GALVANIZED

SCHEDULE 80 RIGID POST

- 2. DRIVE AND PILE LOCATIONS ARE PER MANUFACTURERS INSTRUCTION
- 3. TWO HORIZONTAL SINGLE—AXIS TRACKERS
- 4.66 PV MODULES AND 11 POSTS PER TRACKER
- 5. RANGE OF MOTION 120°
- 6. ONE BRUSHED 24VDC MOTOR PER TRACKER


Project Name and Address

UNIVERSITY OF LOUISIANA AT LAFAYETTE—CLECO POWER 2008 HUTCHINSON AVE CROWLEY, LA 70526

Drawn By	Sheet
ndrea Lee, Nick Boyd	
Date 09/15/2022	PV-5.
Scale	

Solar Detail

or CONFIDENTIAL information and may be read or used only by the intended recipient. If you are not the intended recipient, please be advised that you have received this in error and that any unauthorized its distribution, printing or conving of these Plans or any attached files strictly prohibited.

General Notes

MICROGRID SYSTEM WITH GROUND MOUNT PV

TABLE OF CONTENTS PV-1.0 COVER PAGE

PV-1.1 GENERAL NOTES

PV-2.0 SITE PLAN

PV-3.0 SOLAR PLAN

PV-3.1 STRING PLAN

PV-3.2 SOLAR COMPONENTS PV-3.3 SOLAR COMPONENTS

PV-3.4 SOLAR COMPONENTS

PV-5.0 EQUIPMENT PLAN

PV-5.1 PAD LAYOUT

PV-5.2 PAD DETAILS

PV-5.3 EQUIPMENT ROOM DETAIL PV-5.4 EQUIPMENT ROOM ELEVATION

PV-5.5 EQUIPMENT ROOM ELEVATION

PV-5.6 EQUIPMENT ROOM ELEVATION

PV-5.7 OUTDOOR WALL ELEVATION

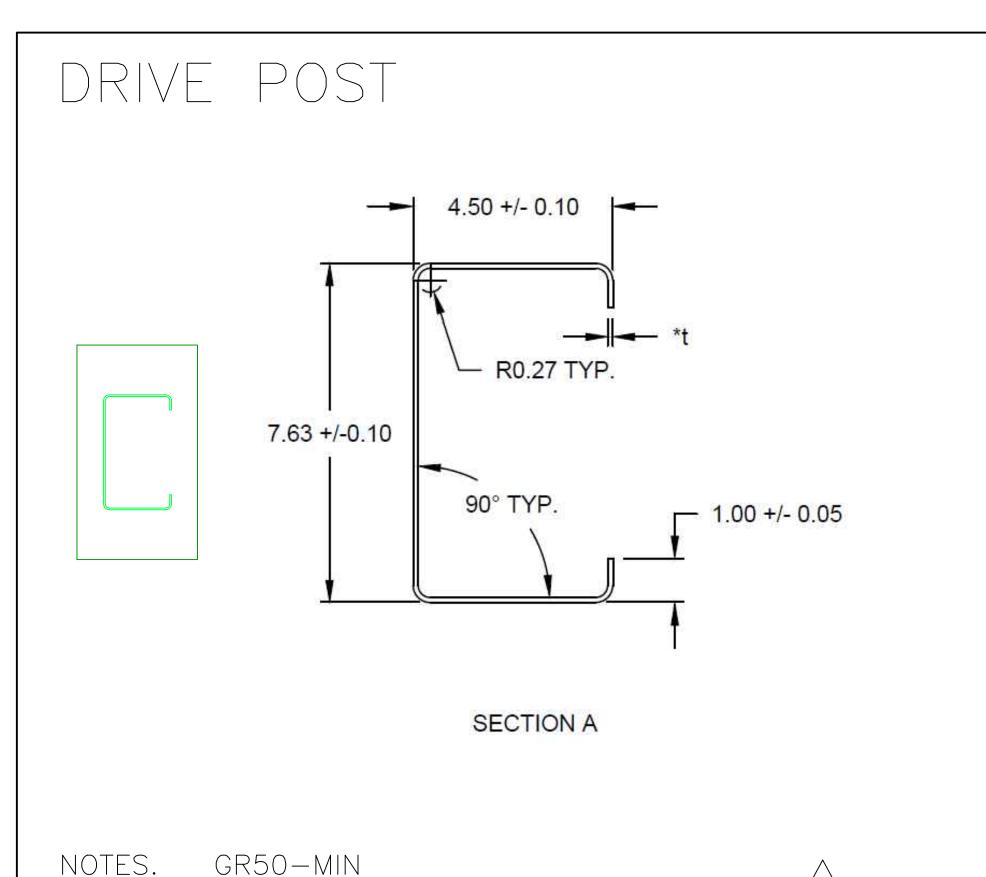
PV-6.0 ELECTRICAL DIAGRAM

PV-7.0 ELECTRICAL CALCULATIONS

PV-8.0 COMMUNICATIONS DIAGRAM

PV-9.0 PANELBOARDS

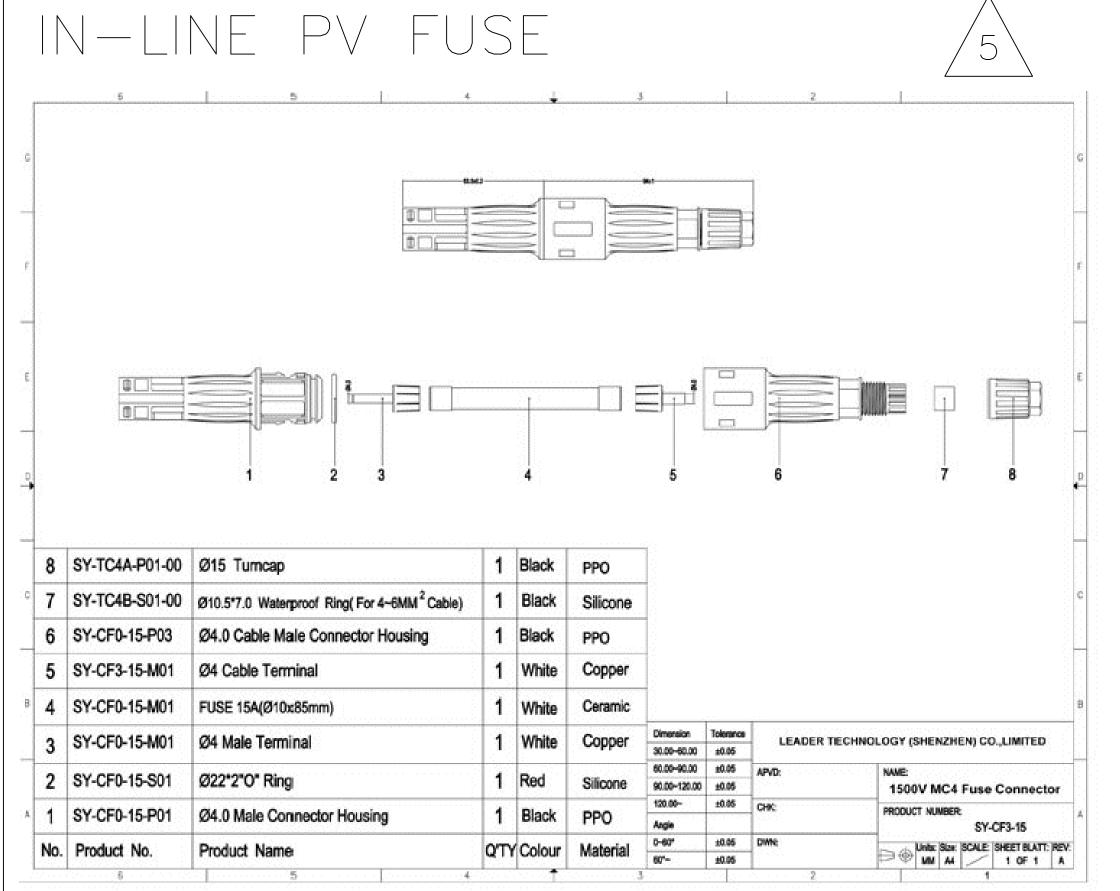
PV-10.0 EQUIPMENT DATA SHEETS

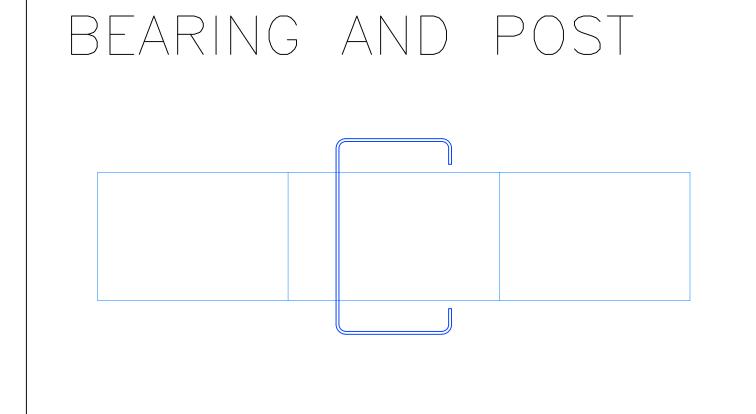

	Revisions	
No.	Issue	Date
110822	REVIEW	
120222	REVIEW	
121222	REVIEW	
122022	REVIEW	
090823	BID SET	
092023	PAD UPDATE	

Project Name and Address

UNIVERSITY OF LOUISIANA AT LAFAYETTE-CLECO POWER 2008 HUTCHINSON AVE CROWLEY, LA 70526

Andrea Lee, Nick Boyd 09/15/2022


CONFIDENTIALITY NOTICE: These plans and any documents transmitted with them may contain PRIVILEGED or CONFIDENTIAL information and may be read or used only by the intended recipient. If you are not the intended recipient, please be advised that you have received this in error and that any unauthorized review, distribution, printing, or copying of these Plans or any attached files is strictly prohibited.



GR235 GALVANIZED

BEARING ASSEMBLY

DEPTH PER MANUFACTURER

GR235 GALVANIZED

GR50-MIN

UL 3703

NOTES.

General Notes

MICROGRID SYSTEM
WITH GROUND MOUNT PV

5804 River Oaks Rd S Elmwood, LA 70123 1-504-267-1660

TABLE OF CONTENTS
PV-1.0 COVER PAGE
PV-1.1 GENERAL NOTES
PV-1.2 REFERENCE
PV-2.0 SITE PLAN
PV-3.0 SOLAR PLAN
PV-3.1 STRING PLAN

PV-3.2 SOLAR COMPONENTS PV-3.3 SOLAR COMPONENTS PV-3.4 SOLAR COMPONENTS

PV-5.4 SOLAR COMPONEN PV-5.0 EQUIPMENT PLAN PV-5.1 PAD LAYOUT

PV-5.1 PAD LAYOUT PV-5.2 PAD DETAILS

PV-5.3 EQUIPMENT ROOM DETAIL PV-5.4 EQUIPMENT ROOM ELEVATION PV-5.5 EQUIPMENT ROOM ELEVATION

PV-5.6 EQUIPMENT ROOM ELEVATION PV-5.7 OUTDOOR WALL ELEVATION PV-6.0 ELECTRICAL DIAGRAM

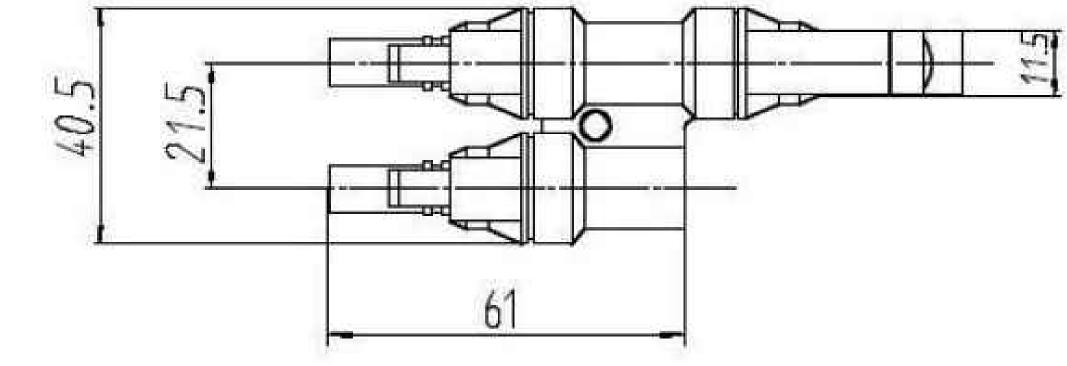
PV-7.0 ELECTRICAL CALCULATIONS PV-8.0 COMMUNICATIONS DIAGRAM PV-9.0 PANELBOARDS

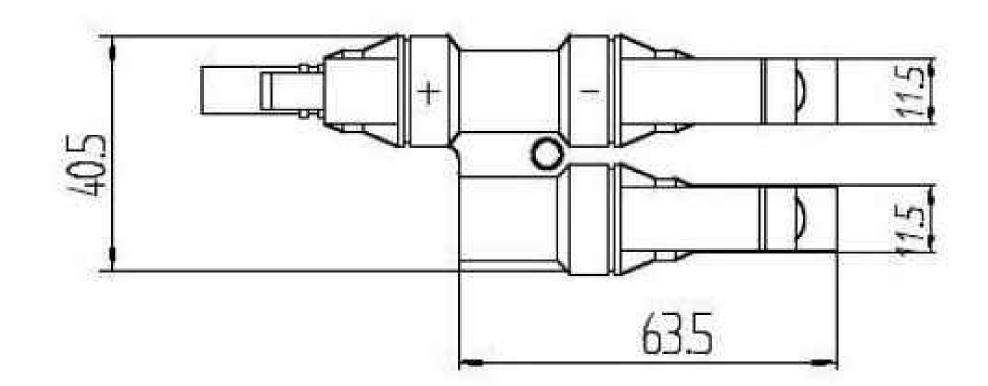
PV-10.0 EQUIPMENT DATA SHEETS

Revisions No. Issue Date 110822 REVIEW 120222 REVIEW 121222 REVIEW 122022 REVIEW 090823 BID SET 092023 PAD UPDATE

Project Name and Address

UNIVERSITY OF LOUISIANA AT LAFAYETTE—CLECO POWER 2008 HUTCHINSON AVE CROWLEY, LA 70526


Drawn By sheet


ndrea Lee, Nick Boyd

Date 09/15/2022

Scale

SOLAR BRANCH CONNECTORS

NOTES. PPO INSULATED COPPER PLATED 20-50A, 1500VDC

POST CAP OPTIMIZED

M10 X 180 HEX HEAD BOI

M30 HEX NUT M12 X 25 HEX HEAD BOLT

> 1/2" USS WASHER M12 HEX NUT

GROUNDING JUMPER

BEARING SADDLE

BEARING INSERT

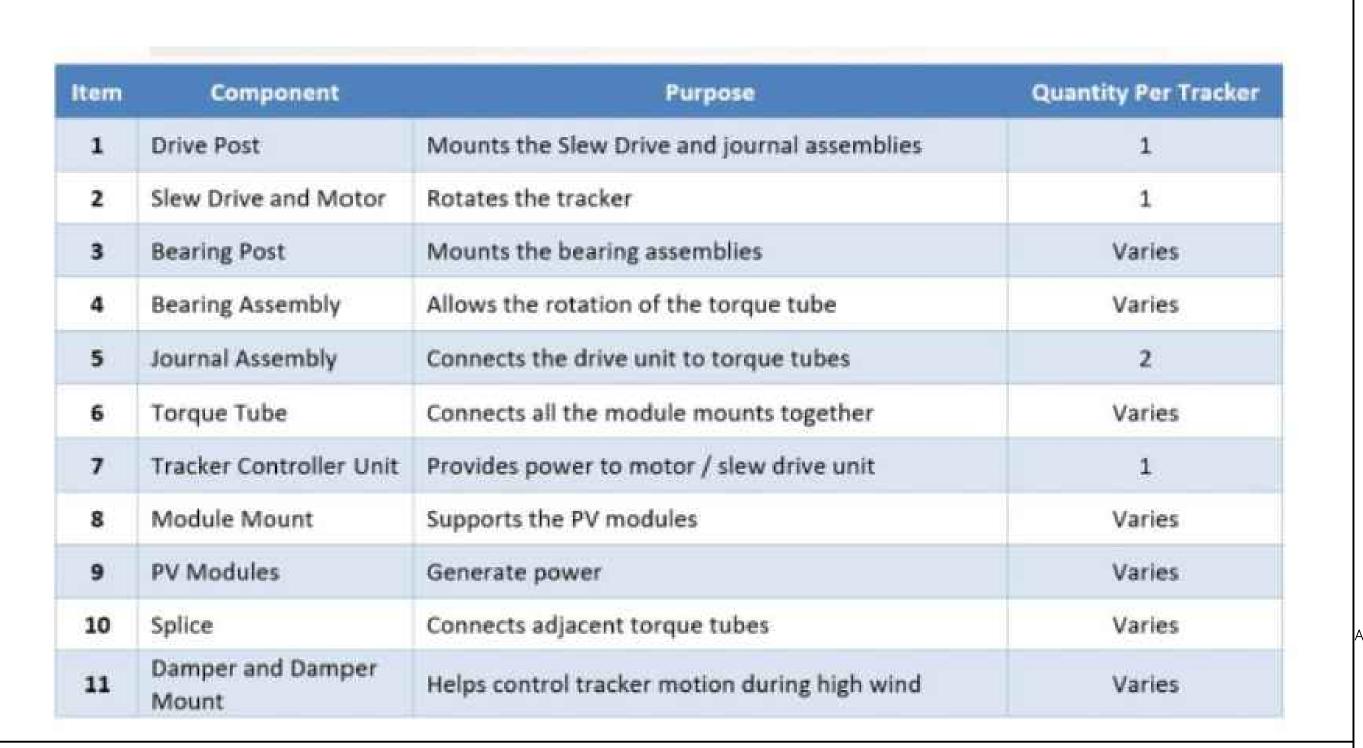
MB X 90 HEX HEAD SOLT

MIS NEX NUT

HOLD DOWN STRAP M8 X 30 HEX HEAD BOLT

M8 HEX NUT


12 84-1000


19 584/153963

SEE "PV-10 EQUIPMENT SPECIFICATION" FOR ADDITIONAL DETAILS

Solar Components

CONFIDENTIALITY NOTICE: Inese plans and any documents transmitted with them may contain PRIVILEUS. or CONFIDENTIAL information and may be read or used only by the intended recipient. If you are not the intended recipient, please be advised that you have received this in error and that any unauthorize review, distribution, printing, or copying of these Plans or any attached files strictly prohibited.

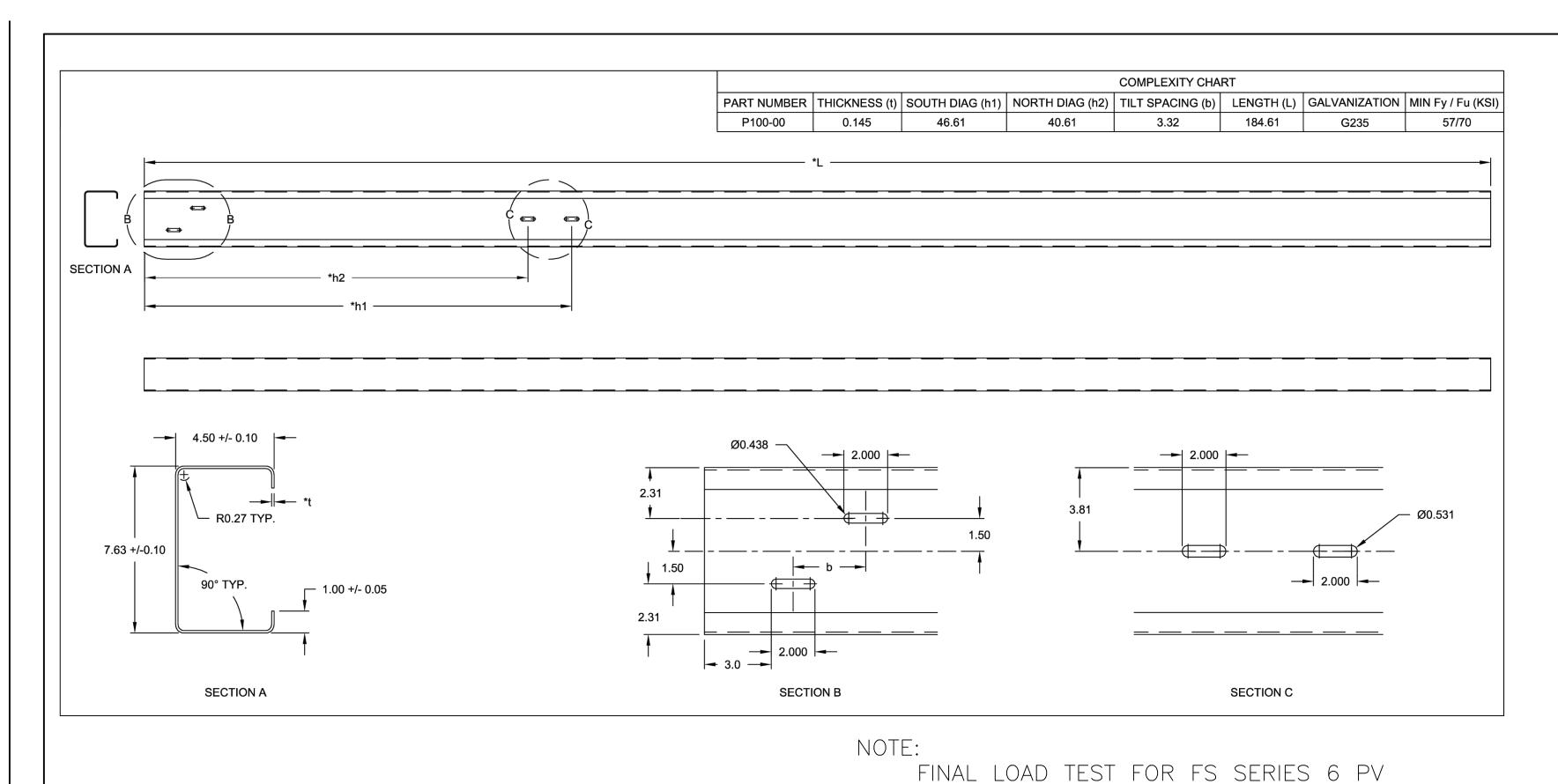
General Notes

MICROGRID SYSTEM
WITH GROUND MOUNT PV

TABLE OF CONTENTS PV-1.0 COVER PAGE PV-1.1 GENERAL NOTES PV-1.2 REFERENCE PV-2.0 SITE PLAN PV-3.0 SOLAR PLAN PV-3.1 STRING PLAN PV-3.2 SOLAR COMPONENTS PV-3.3 SOLAR COMPONENTS PV-3.4 SOLAR COMPONENTS PV-5.0 EQUIPMENT PLAN PV-5.1 PAD LAYOUT PV-5.2 PAD DETAILS PV-5.3 EQUIPMENT ROOM DETAIL PV-5.4 EQUIPMENT ROOM ELEVATION PV-5.5 EQUIPMENT ROOM ELEVATION PV-5.6 EQUIPMENT ROOM ELEVATION PV-5.7 OUTDOOR WALL ELEVATION PV-6.0 ELECTRICAL DIAGRAM PV-7.0 ELECTRICAL CALCULATIONS

	Revisions		
No.	Issue	Date	
110822	REVIEW		
120222	REVIEW		
121222	REVIEW		
122022	REVIEW		
090823	BID SET		
092023	PAD UPDATE		

PV-8.0 COMMUNICATIONS DIAGRAM


PV-10.0 EQUIPMENT DATA SHEETS

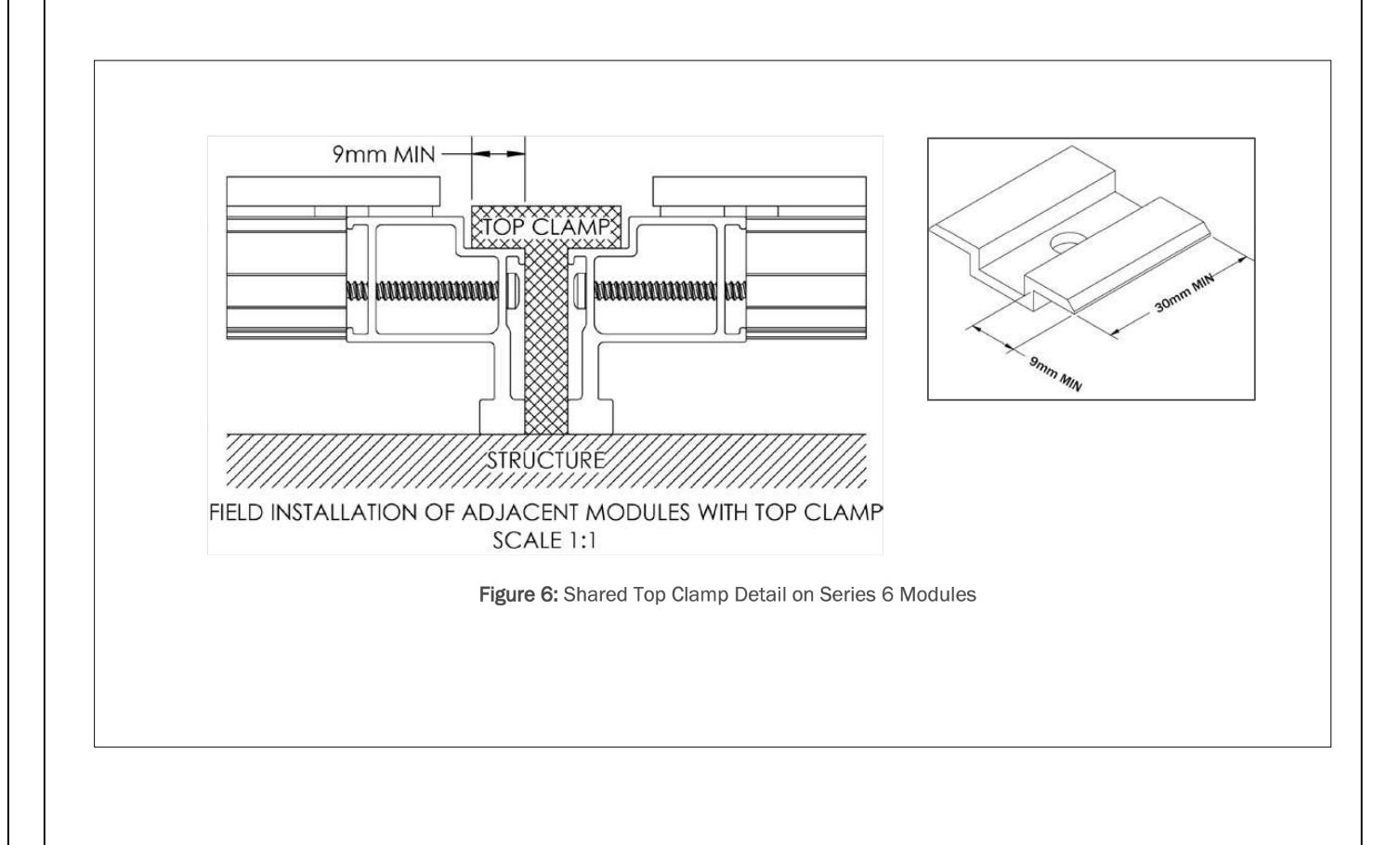
PV-9.0 PANELBOARDS

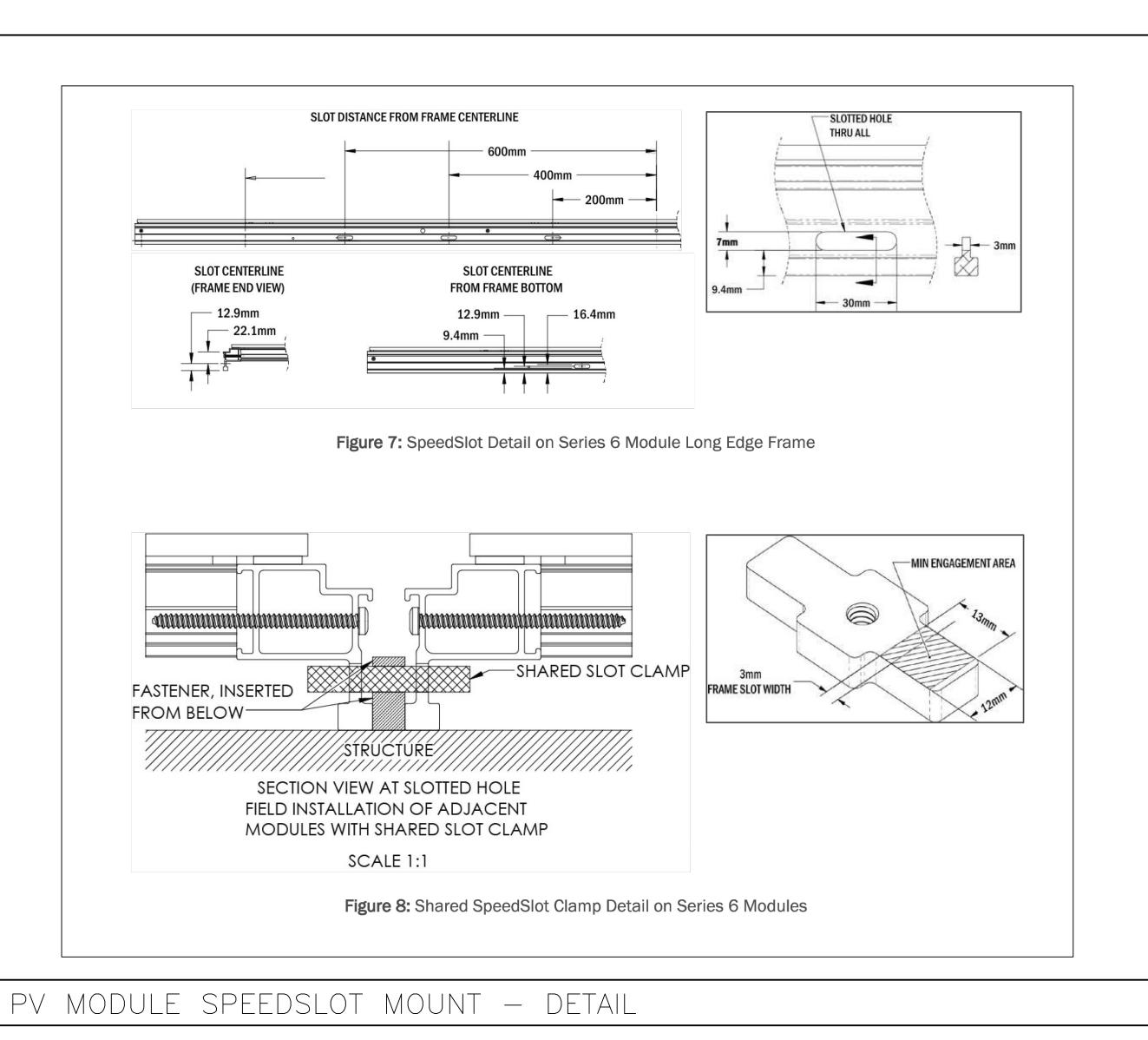
Project Name and Address

UNIVERSITY OF LOUISIANA AT LAFAYETTE—CLECO POWER 2008 HUTCHINSON AVE CROWLEY, LA 70526

Drawn By ndrea Lee, Nick Boyd	Sheet
Date 09/15/2022	
Scale N/A	

MODULES WILL DETERMINE THE OPTIMIZED 400MM


SPACED BOLTING LOCATION PER MANUFACTURER


7.63 +/-0.10 90° TYP. 1.00 +/- 0.05

SECTION A

OMCO SINGLE-AXIS TRACKER - DETAIL

PV MODULE TOP MOUNT - DETAIL

SOLAR

5804 River Oaks Rd S
Elmwood, LA 70123
1-504-267-1660

General Notes

MICROGRID SYSTEM
WITH GROUND MOUNT PV

TABLE OF CONTENTS
PV-1.0 COVER PAGE
PV-1.1 GENERAL NOTES
PV-1.2 REFERENCE
PV-2.0 SITE PLAN
PV-3.0 SOLAR PLAN

PV-3.1 STRING PLAN
PV-3.2 SOLAR COMPONENTS
PV-3.3 SOLAR COMPONENTS

PV-3.4 SOLAR COMPONENTS
PV-5.0 EQUIPMENT PLAN

PV-5.1 PAD LAYOUT PV-5.2 PAD DETAILS

PV-5.3 EQUIPMENT ROOM DETAIL
PV-5.4 EQUIPMENT ROOM ELEVATION
PV-5.5 FOLIPMENT ROOM ELEVATION

PV-5.5 EQUIPMENT ROOM ELEVATION
PV-5.6 EQUIPMENT ROOM ELEVATION
PV 5.7 OUTDOOR WALL FLEVATION

PV-5.7 OUTDOOR WALL ELEVATION PV-6.0 ELECTRICAL DIAGRAM

PV-7.0 ELECTRICAL CALCULATIONS PV-8.0 COMMUNICATIONS DIAGRAM PV-9.0 PANELBOARDS

PV-9.0 PANELBUARDS PV-10.0 EQUIPMENT DATA SHEETS

 Revisions

 No.
 Issue
 Date

 110822
 REVIEW

 120222
 REVIEW

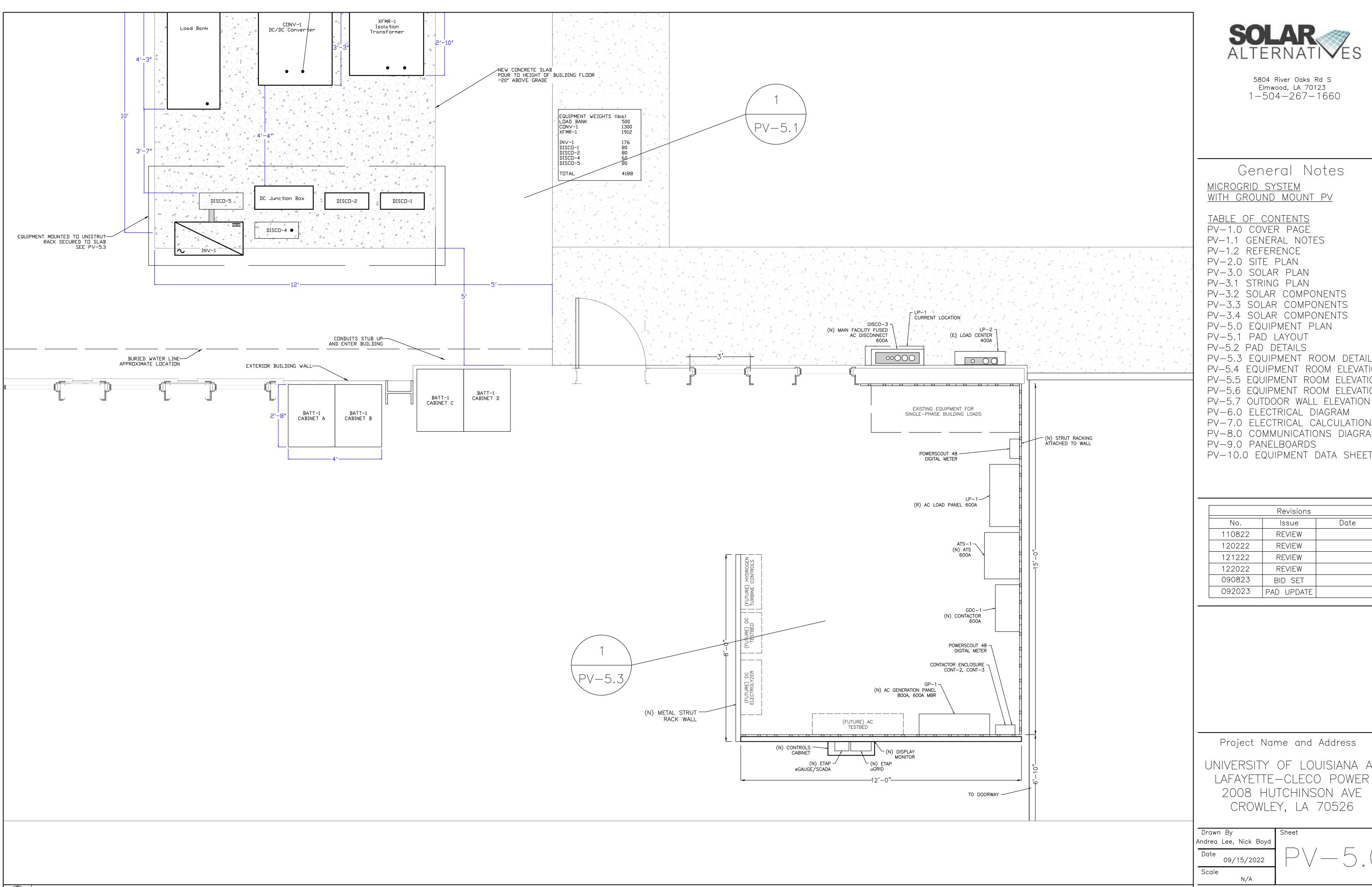
 121222
 REVIEW

 122022
 REVIEW

 090823
 BID SET

 092023
 PAD UPDATE

Project Name and Address


UNIVERSITY OF LOUISIANA AT LAFAYETTE—CLECO POWER 2008 HUTCHINSON AVE CROWLEY, LA 70526

Drawn By
Andrea Lee, Nick Boyd

Date
09/15/2022

Scale

CONFIDENTIALITY NOTICE: These plans and any documents transmitted with them may contain PRIVILEGED or CONFIDENTIAL information and may be read or used only by the intended recipient. If you are not not the intended administration of the plant of the intended administration of the plant of the intended administration of the plant of the plant

Equipment Plan

5804 River Oaks Rd S Elmwood, LA 70123 1-504-267-1660

General Notes MICROGRID SYSTEM

TABLE OF CONTENTS

PV-1.1 GENERAL NOTES

PV-2.0 SITE PLAN

PV-3.0 SOLAR PLAN

PV-3.1 STRING PLAN

PV-3.3 SOLAR COMPONENTS

PV-3.4 SOLAR COMPONENTS

PV-5.0 EQUIPMENT PLAN

PV-5.2 PAD DETAILS

PV-5.3 EQUIPMENT ROOM DETAIL PV-5.4 EQUIPMENT ROOM ELEVATION

PV-5.5 EQUIPMENT ROOM ELEVATION

PV-5.6 EQUIPMENT ROOM ELEVATION

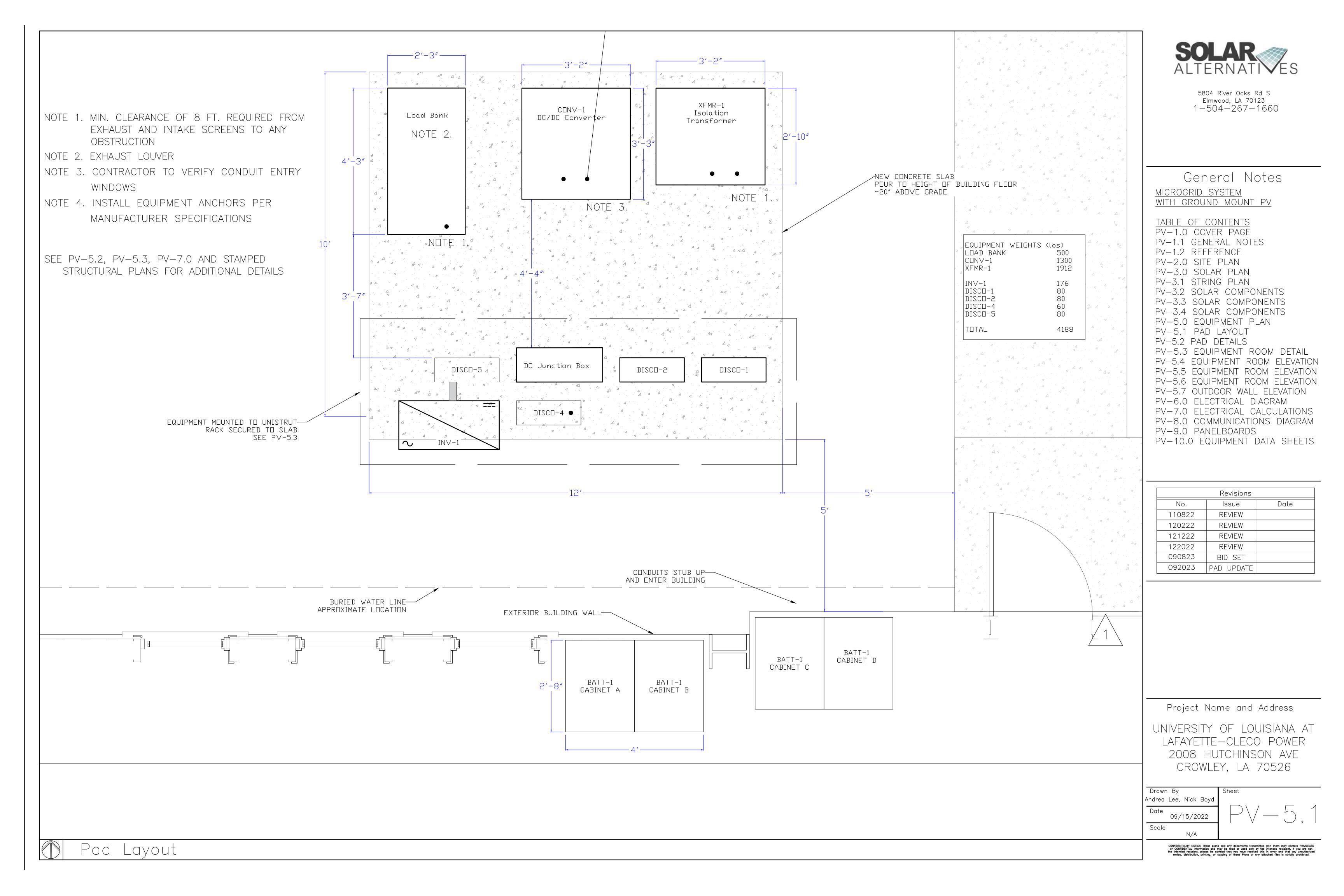
PV-6.0 ELECTRICAL DIAGRAM

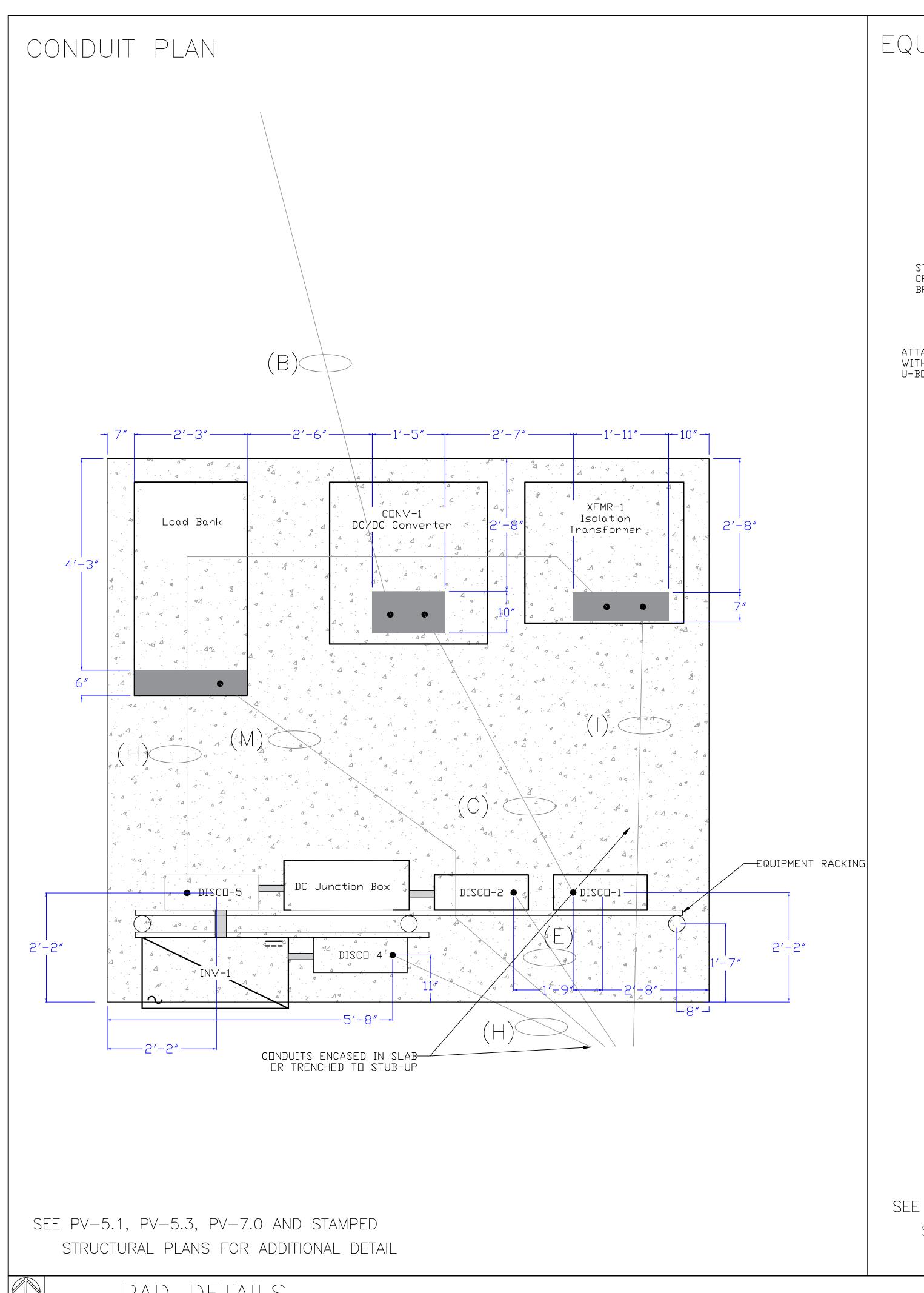
PV-7.0 ELECTRICAL CALCULATIONS

PV-8.0 COMMUNICATIONS DIAGRAM

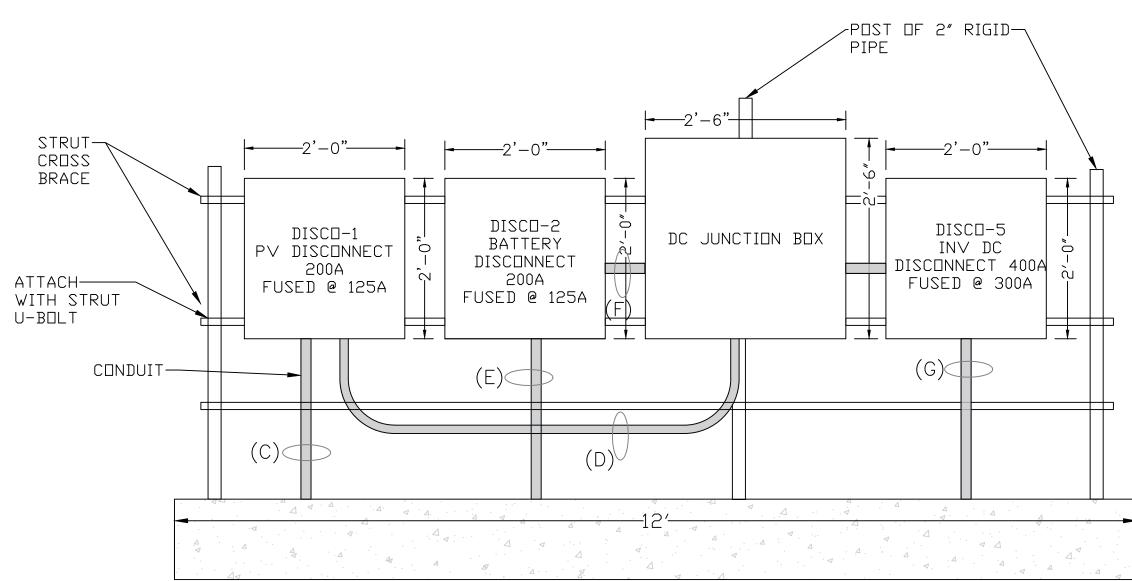
PV-9.0 PANELBOARDS

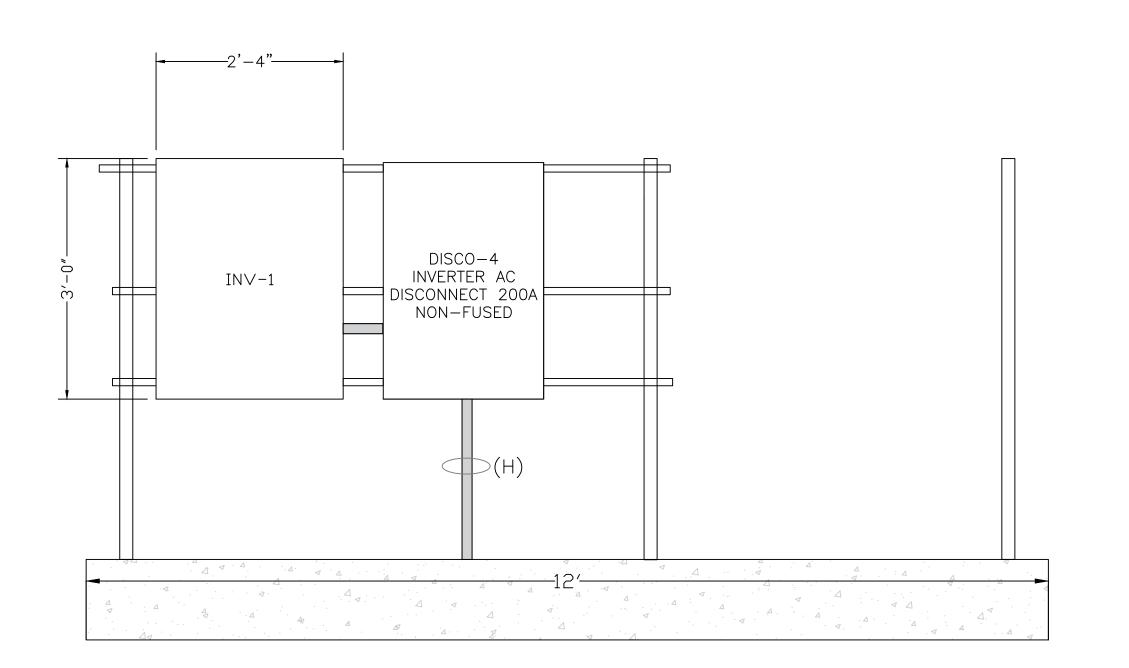
PV-10.0 EQUIPMENT DATA SHEETS


	Revisions					
No.	Issue	Date				
110822	REVIEW					
120222	REVIEW					
121222	REVIEW					
122022	REVIEW					
090823	BID SET					
092023	PAD UPDATE					


Project Name and Address

UNIVERSITY OF LOUISIANA AT LAFAYETTE-CLECO POWER 2008 HUTCHINSON AVE CROWLEY, LA 70526


Andrea Lee, Nick Boyd 09/15/2022


CONFIDENTIALITY NOTICE: These plans and any documents transmitted with them may contain PRIVILEGED or CONFIDENTIAL information and may be read or used only by the intended recipient. If you are not the intended recipient, please be advised that you have received this in error and that any unauthorized review, distribution, printing, or copying of these Plans or any attached files is strictly prohibited.

EQUIPMENT RACK ELEVATION

SEE PV-5.1, PV-5.3, PV-7.0 AND STAMPED STRUCTURAL PLANS FOR ADDITIONAL DETAIL

5804 River Oaks Rd S Elmwood, LA 70123 1-504-267-1660

General Notes MICROGRID SYSTEM WITH GROUND MOUNT PV

TABLE OF CONTENTS PV-1.0 COVER PAGE PV-1.1 GENERAL NOTES PV-1.2 REFERENCE PV-2.0 SITE PLAN PV-3.0 SOLAR PLAN PV-3.1 STRING PLAN PV-3.2 SOLAR COMPONENTS

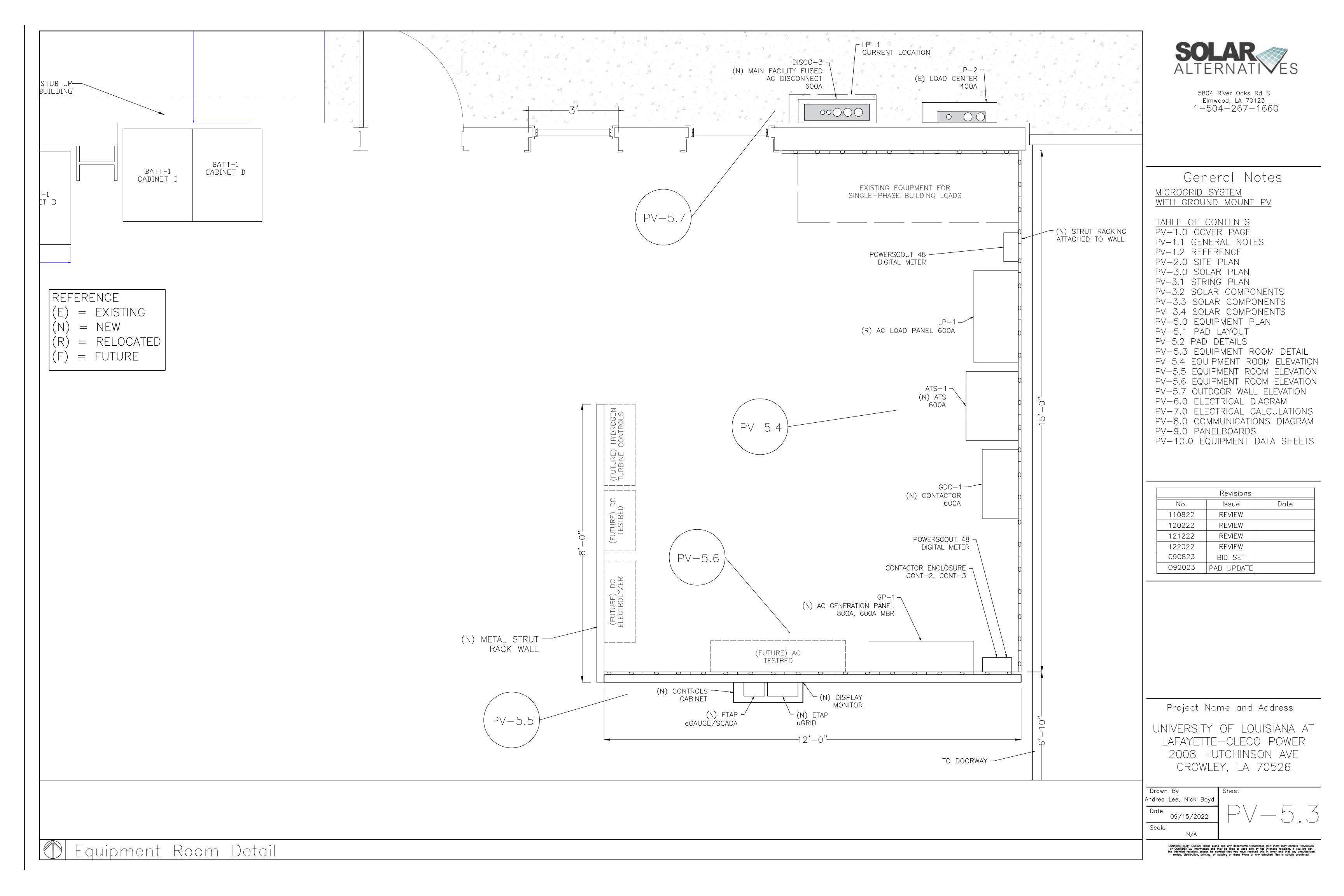
PV-3.3 SOLAR COMPONENTS PV-3.4 SOLAR COMPONENTS

PV-5.0 EQUIPMENT PLAN PV-5.1 PAD LAYOUT

PV-5.2 PAD DETAILS PV-5.3 EQUIPMENT ROOM DETAIL PV-5.4 EQUIPMENT ROOM ELEVATION

PV-5.5 EQUIPMENT ROOM ELEVATION PV-5.6 EQUIPMENT ROOM ELEVATION PV-5.7 OUTDOOR WALL ELEVATION

PV-6.0 ELECTRICAL DIAGRAM PV-7.0 ELECTRICAL CALCULATIONS PV-8.0 COMMUNICATIONS DIAGRAM


PV-9.0 PANELBOARDS PV-10.0 EQUIPMENT DATA SHEETS

Revisions Date Issue 110822 REVIEW 120222 REVIEW 121222 REVIEW REVIEW 122022 090823 BID SET 092023 PAD UPDATE

Project Name and Address

UNIVERSITY OF LOUISIANA AT LAFAYETTE-CLECO POWER 2008 HUTCHINSON AVE CROWLEY, LA 70526

Drawn By Andrea Lee, Nick Boyd 09/15/2022 Scale

EAST WALL 6" TROUGH - EXISTING BLDG LOADS EXISTING CONDUIT CLEARANCE FOR GP-1GP-1 (ON NEW LP-1∼ NEW EQUIPMENT WALL EQUIPMENT WALL) SQUARE D ATS-1"RELOCATED" AC LOAD ASCO 300 PANEL 600A 600A MCB STEEL I-BEAMS — (EXISTING) $(\bigcup$ \leftarrow POWERSCOUT 48,-DIGITAL METER GDC-1CONTACTOR (P)- EXISTING EQUIPMENT EQUIPMENT STRUT-MOUNTED TO WALL -SINGLE-PHASE BUILDING LOADS

5804 River Oaks Rd S Elmwood, LA 70123 1-504-267-1660

General Notes

MICROGRID SYSTEM
WITH GROUND MOUNT PV

TABLE OF CONTENTS
PV-1.0 COVER PAGE
PV-1.1 GENERAL NOTES
PV-1.2 REFERENCE
PV-2.0 SITE PLAN
PV-3.0 SOLAR PLAN
PV-3.1 STRING PLAN
PV-3.1 STRING PLAN
PV-3.2 SOLAR COMPONENTS
PV-3.3 SOLAR COMPONENTS
PV-3.4 SOLAR COMPONENTS
PV-5.0 EQUIPMENT PLAN
PV-5.1 PAD LAYOUT
PV-5.2 PAD DETAILS
PV-5.3 EQUIPMENT ROOM DETAIL
PV-5.4 EQUIPMENT ROOM ELEVATION

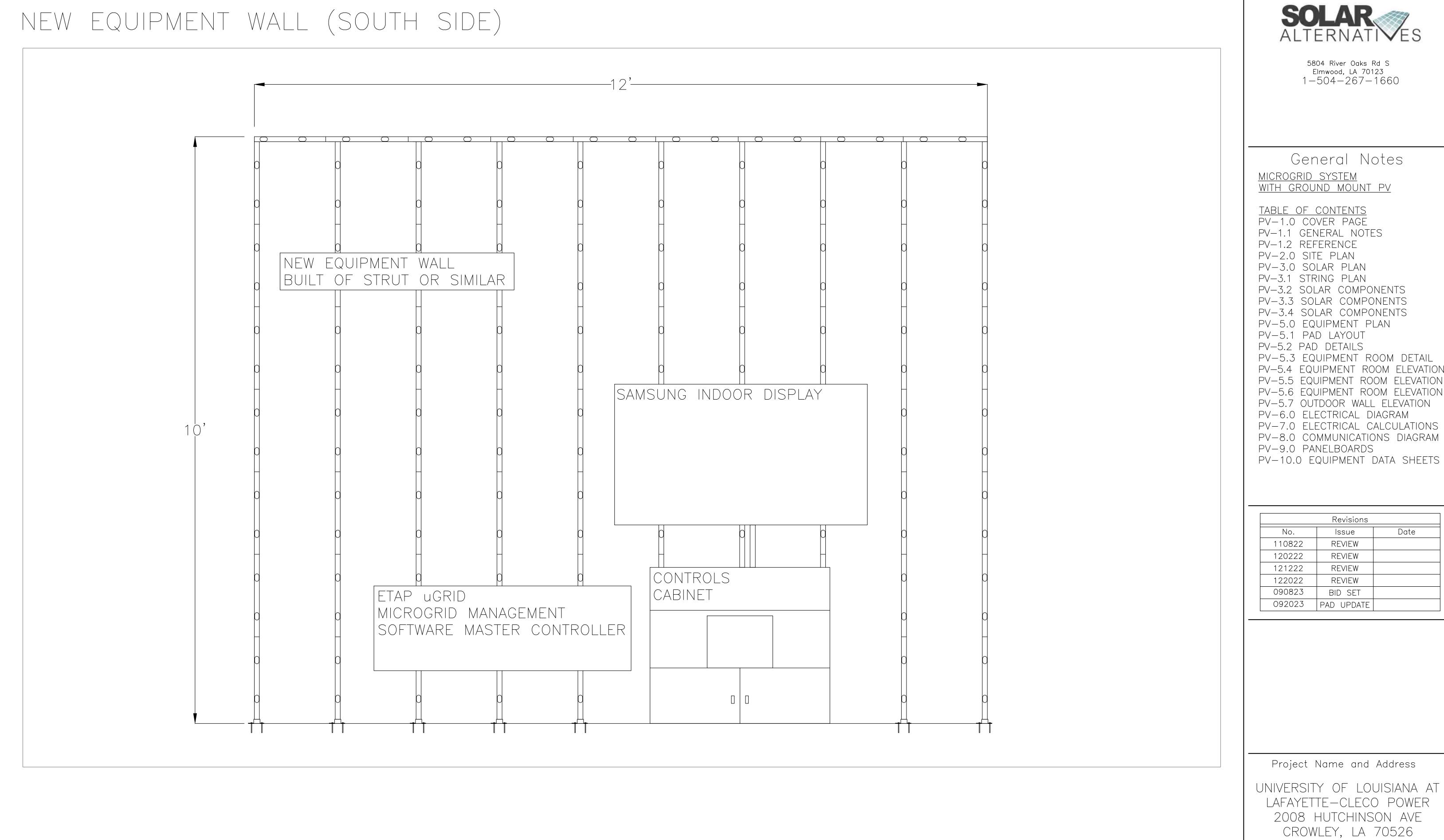
PV-5.7 OUTDOOR WALL ELEVATION
PV-6.0 ELECTRICAL DIAGRAM
PV-7.0 ELECTRICAL CALCULATIONS
PV-8.0 COMMUNICATIONS DIAGRAM
PV-9.0 PANELBOARDS

PV-5.5 EQUIPMENT ROOM ELEVATION

PV-5.6 EQUIPMENT ROOM ELEVATION

PV-10.0 EQUIPMENT DATA SHEETS

Revisions							
No.	Issue	Date					
110822	REVIEW						
120222	REVIEW						
121222	REVIEW						
122022	REVIEW						
090823	BID SET						
092023	PAD UPDATE						


Project Name and Address

UNIVERSITY OF LOUISIANA AT LAFAYETTE—CLECO POWER 2008 HUTCHINSON AVE CROWLEY, LA 70526

Drawn By
Andrea Lee, Nick Boyd

Date
09/15/2022

Scale

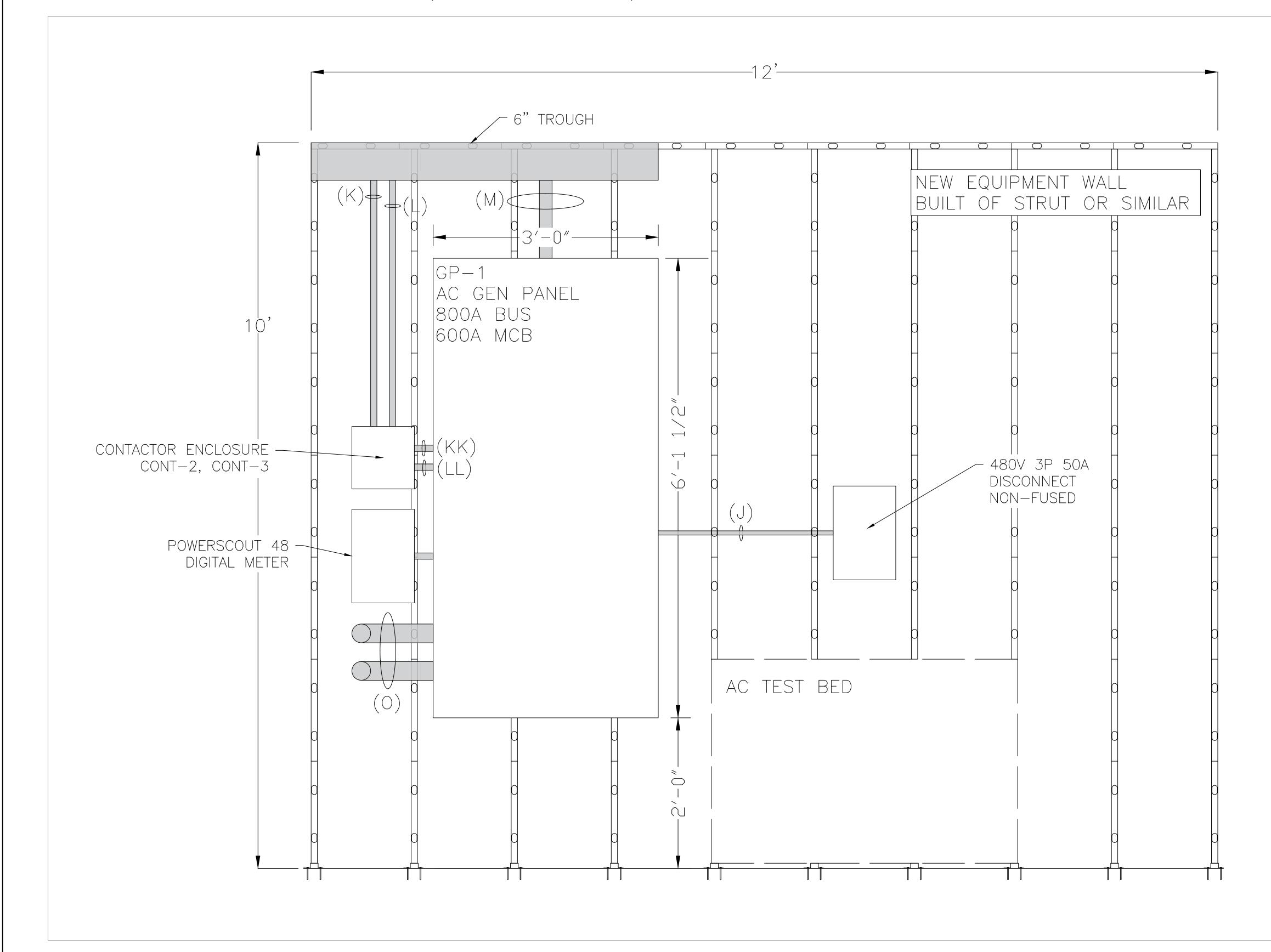
General Notes MICROGRID SYSTEM WITH GROUND MOUNT PV

TABLE OF CONTENTS PV-1.0 COVER PAGE PV-1.1 GENERAL NOTES PV-1.2 REFERENCE PV-2.0 SITE PLAN PV-3.0 SOLAR PLAN PV-3.1 STRING PLAN PV-3.2 SOLAR COMPONENTS PV-3.3 SOLAR COMPONENTS PV-3.4 SOLAR COMPONENTS PV-5.0 EQUIPMENT PLAN PV-5.1 PAD LAYOUT PV-5.2 PAD DETAILS PV-5.3 EQUIPMENT ROOM DETAIL PV-5.4 EQUIPMENT ROOM ELEVATION

PV-5.6 EQUIPMENT ROOM ELEVATION PV-5.7 OUTDOOR WALL ELEVATION PV-6.0 ELECTRICAL DIAGRAM PV-7.0 ELECTRICAL CALCULATIONS

PV-9.0 PANELBOARDS PV-10.0 EQUIPMENT DATA SHEETS

	Revisions						
No.	Issue	Date					
110822	REVIEW						
120222	REVIEW						
121222	REVIEW						
122022	REVIEW						
090823	BID SET						
092023	PAD UPDATE						


Project Name and Address

UNIVERSITY OF LOUISIANA AT LAFAYETTE-CLECO POWER 2008 HUTCHINSON AVE CROWLEY, LA 70526

Andrea Lee, Nick Boyd

Equipment Room Elevation

NEW EQUIPMENT WALL (NORTH SIDE)

5804 River Oaks Rd S Elmwood, LA 70123 1-504-267-1660

General Notes

MICROGRID SYSTEM
WITH GROUND MOUNT PV

TABLE OF CONTENTS PV-1.0 COVER PAGE PV-1.1 GENERAL NOTES PV-1.2 REFERENCE PV-2.0 SITE PLAN PV-3.0 SOLAR PLAN PV-3.1 STRING PLAN PV-3.2 SOLAR COMPONENTS PV-3.3 SOLAR COMPONENTS PV-3.4 SOLAR COMPONENTS PV-5.0 EQUIPMENT PLAN PV-5.1 PAD LAYOUT PV-5.2 PAD DETAILS PV-5.3 EQUIPMENT ROOM DETAIL PV-5.4 EQUIPMENT ROOM ELEVATION PV-5.5 EQUIPMENT ROOM ELEVATION PV-5.6 EQUIPMENT ROOM ELEVATION PV-5.7 OUTDOOR WALL ELEVATION PV-6.0 ELECTRICAL DIAGRAM

 Revisions

 No.
 Issue
 Date

 110822
 REVIEW

 120222
 REVIEW

 121222
 REVIEW

 122022
 REVIEW

 090823
 BID SET

 092023
 PAD UPDATE

PV-7.0 ELECTRICAL CALCULATIONS

PV-8.0 COMMUNICATIONS DIAGRAM

PV-10.0 EQUIPMENT DATA SHEETS

PV-9.0 PANELBOARDS

Project Name and Address

UNIVERSITY OF LOUISIANA AT LAFAYETTE—CLECO POWER 2008 HUTCHINSON AVE CROWLEY, LA 70526

Drawn By
Andrea Lee, Nick Boyd

Date

09/15/2022

Scale

OUTDOOR WALL - LP-1 CURRENT LOCATION LP-22'-1"---SQUARE D EXISTING LOAD CENTER DISCO-3400A SQUARE D 400A MCB WINDOW MAIN FACILITY DISCONNECT, FUSED 600A 4 $\overline{}$

5804 River Oaks Rd S Elmwood, LA 70123 1-504-267-1660

General Notes

MICROGRID SYSTEM
WITH GROUND MOUNT PV

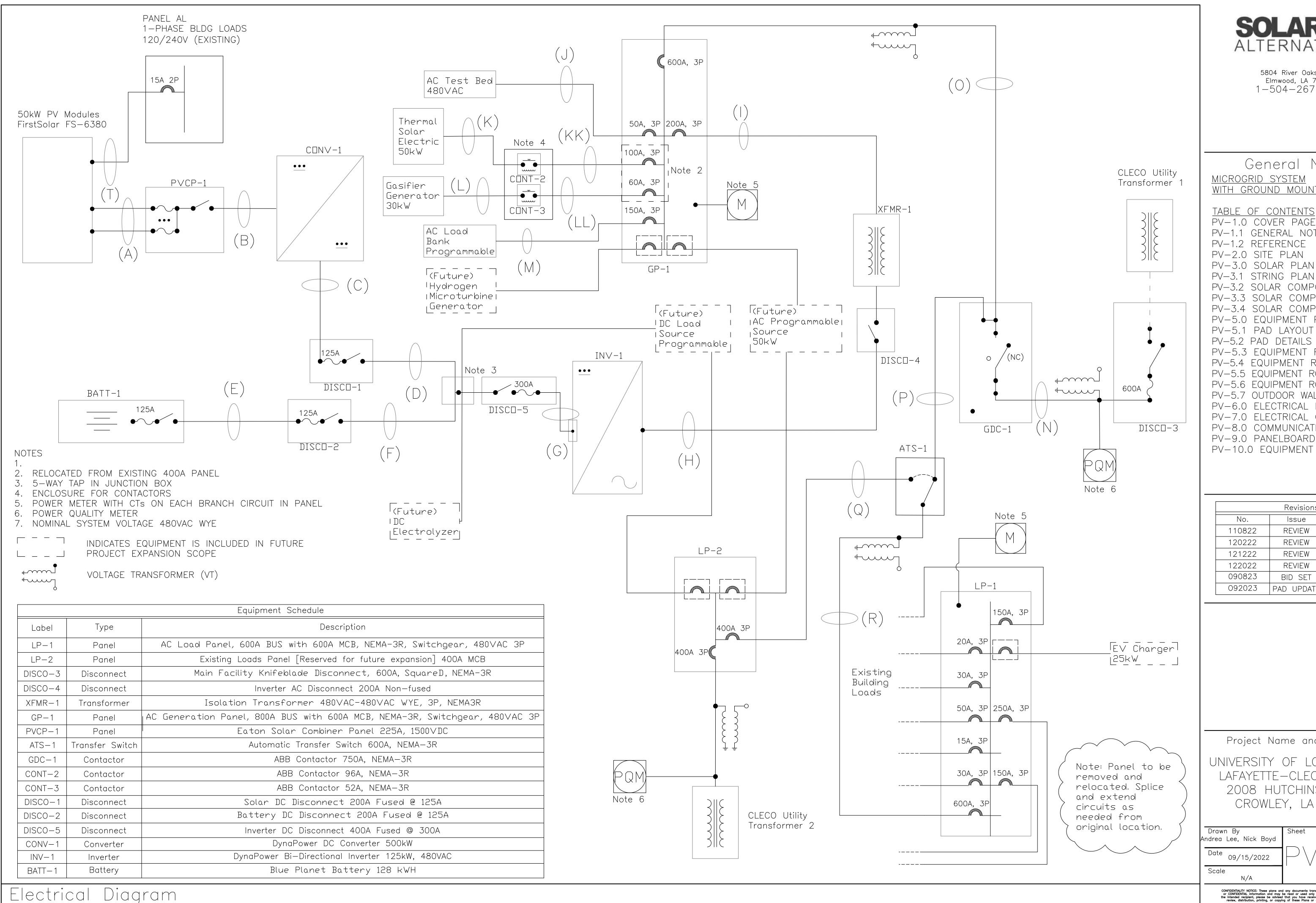
TABLE OF CONTENTS PV-1.0 COVER PAGE PV-1.1 GENERAL NOTES PV-1.2 REFERENCE PV-2.0 SITE PLAN PV-3.0 SOLAR PLAN PV-3.1 STRING PLAN PV-3.2 SOLAR COMPONENTS PV-3.3 SOLAR COMPONENTS PV-3.4 SOLAR COMPONENTS PV-5.0 EQUIPMENT PLAN PV-5.1 PAD LAYOUT PV-5.2 PAD DETAILS PV-5.3 EQUIPMENT ROOM DETAIL PV-5.4 EQUIPMENT ROOM ELEVATION PV-5.5 EQUIPMENT ROOM ELEVATION PV-5.6 EQUIPMENT ROOM ELEVATION PV-5.7 OUTDOOR WALL ELEVATION PV-6.0 ELECTRICAL DIAGRAM

	Revisions							
No.	Issue	Date						
110822	REVIEW							
120222	REVIEW							
121222	REVIEW							
122022	REVIEW							
090823	BID SET							
092023	PAD UPDATE							

PV-7.0 ELECTRICAL CALCULATIONS PV-8.0 COMMUNICATIONS DIAGRAM

PV-10.0 EQUIPMENT DATA SHEETS

PV-9.0 PANELBOARDS


Project Name and Address

UNIVERSITY OF LOUISIANA AT LAFAYETTE—CLECO POWER 2008 HUTCHINSON AVE CROWLEY, LA 70526

Drawn By
Andrea Lee, Nick Boyd

Date
09/15/2022

Scale

General Notes MICROGRID SYSTEM WITH GROUND MOUNT PV

PV-1.0 COVER PAGE PV-1.1 GENERAL NOTES PV-1.2 REFERENCE PV-2.0 SITE PLAN PV-3.0 SOLAR PLAN PV-3.1 STRING PLAN

PV-3.2 SOLAR COMPONENTS PV-3.3 SOLAR COMPONENTS PV-3.4 SOLAR COMPONENTS

PV-5.0 EQUIPMENT PLAN PV-5.1 PAD LAYOUT PV-5.2 PAD DETAILS

PV-5.3 EQUIPMENT ROOM DETAIL PV-5.4 EQUIPMENT ROOM ELEVATION PV-5.5 EQUIPMENT ROOM ELEVATION PV-5.6 EQUIPMENT ROOM ELEVATION

PV-5.7 OUTDOOR WALL ELEVATION PV-6.0 ELECTRICAL DIAGRAM

PV-7.0 ELECTRICAL CALCULATIONS PV-8.0 COMMUNICATIONS DIAGRAM PV-9.0 PANELBOARDS

PV-10.0 EQUIPMENT DATA SHEETS

	Revisions							
No.		Issue	Date					
11082	22	REVIEW						
12022	22	REVIEW						
1212	22	REVIEW						
12202	22	REVIEW						
0908	23	BID SET						
0920	23	PAD UPDATE						

Project Name and Address

UNIVERSITY OF LOUISIANA AT LAFAYETTE-CLECO POWER 2008 HUTCHINSON AVE CROWLEY, LA 70526

Drawn By Andrea Lee, Nick Boyd	Sheet
Date 09/15/2022	PV-6.0
Scale	

CONFIDENTIALITY NOTICE: These plans and any documents transmitted with them may contain PRIVILEGED or CONFIDENTIAL information and may be read or used only by the intended recipient. If you are not the intended recipient, please be advised that you have received this in error ad that any unauthorizer review, distribution, printing, or copying of these Plans or any attached files is strictly prohibited.

Module Specific First Solar FS-	
Nominal Power	380 W
TEMP CoEFF (VOC)	-0.35 %/°C
VMP	171.6 V
IMP	2.21 A
VOC	213.8 V
ISC	2.48 A
Height	79"
Width	49"
Depth	2"
Max Series Fuse	6 A
Max System Volt	1500 V

Inverter Specifications:	Dynapower MPS-125
Max DC Input Power	125 kW
Max DC Input Current	171 A
Max AC Output Power	125 kW
AC Output Current	80 A
Max DC Voltage	1500 V
DC Operating Voltage	740-1500 V
AC Nominal Voltage	480 VAC 3-Ph

Specifications:	Dynapower MPS-125	String Max Vol Voc temperatu
Input Power	125 kW	1 —
Input Current	171 A	1.09
Dutput Power	125 kW	1.03
put Current	80 A	Voc @ −4°C =
C Voltage	1500 V	Voc
ating Voltage	740-1500 V	213. 233.
inal Voltage	480 VAC 3-Ph	
		May String Lor

Strin	g Max Voltage Calculation:
Voc	temperature adjustment at $-4^{\circ}C = 1 - [\beta Voc * \Delta T]/100 1 - [-0.35 %/°C * (25°C-(-4°C))]/100 1.0928$
Voc	<pre>@ -4°C = Voc @ 25°C * temp adjustment factor 213.8 V * 1.0928 233.6406 V</pre>
Max	String Length = Max Voltage / Temp adjusted Voc 1500 V / 233.64 V

6.4 Modules = 6 Modules

							Wire Sche	edule				
Tag	Set	Qty	FLA	OCPD (A)	Size	Туре	Ground		Length (ft)	Voltage Drop (%)	Conduit	Notes
A	21	22	7	10	CU #12	PV Wire	CU #12	1500	25-300	1.11	Free air	
В	1	2	93		CU 2/0	XHHW-2	CU #8	1500	550	0.59	2" PVC	
С	1	2	85	90	CU #2	XHHW-2	CU #8	1000	15		1" EMT	
D	1	2	85	90	CU #2	XHHW-2	CU #8	1000	15		1" EMT	
Е	1	2	150	125	CU #1	XHHW-2	CU #6	1000	30		1-1/4" EMT	
F	1	2	125	125	CU #1	XHHW-2	CU #6	1000	30		1-1/4" EMT	
G	1	2	215	225	CU 4/0	XHHW-2	CU #4	1000	10		2" EMT	
Н	1	3	200	200	CU 2/0	THHN	CU #6	480	30		2" EMT	
	1	3	200	200	CU 2/0	THHN	CU #6	480	100		2" EMT	
J	1	4	50	50	CU #8	THHN	CU #10	480	50		3/4" EMT	
K	1	4	100	100	CU #2	THHN	CU #8	480	300		1" EMT	Note 1
KK	1	4	100	100	CU #2	THHN	CU #8	480	5		1" EMT	
L	1	4	60	60	CU #6	THHN	CU #10	480	200		1" EMT	Note 1
LL	1	4	60	60	CU #6	THHN	CU #10	480	5		1" EMT	
М	1	4	150	150	CU 2/0	THHN	CU #6	480	100		2" EMT	
Ν	3	4	600	600	CU 3/0	THHN	CU #1	480	10		(2) 3" EMT	
0	3	4	600	600	CU 3/0	THHN	CU #1	480	40		(2) 3" EMT	
Р	3	4	600	600	CU 3/0	THHN	CU #1	480	15		(2) 3" EMT	
Q	2	4	400	400	CU 3/0	THHN	CU #2	480	40		3" EMT	
R	3	4	600	600	CU 3/0	THHN	CU #1	480	20		(2) 3" EMT	
T	1	3	7	15	CU #8	THHN	CU #12	240	550	2.57	2" PVC	

Notes

1. EXISTING CONDUCTORS. EXTEND FEEDERS TO RELOCATE BREAKERS TO NEW PANEL. MATCH NEW CONDUCTORS & CONDUIT TO EXISTING

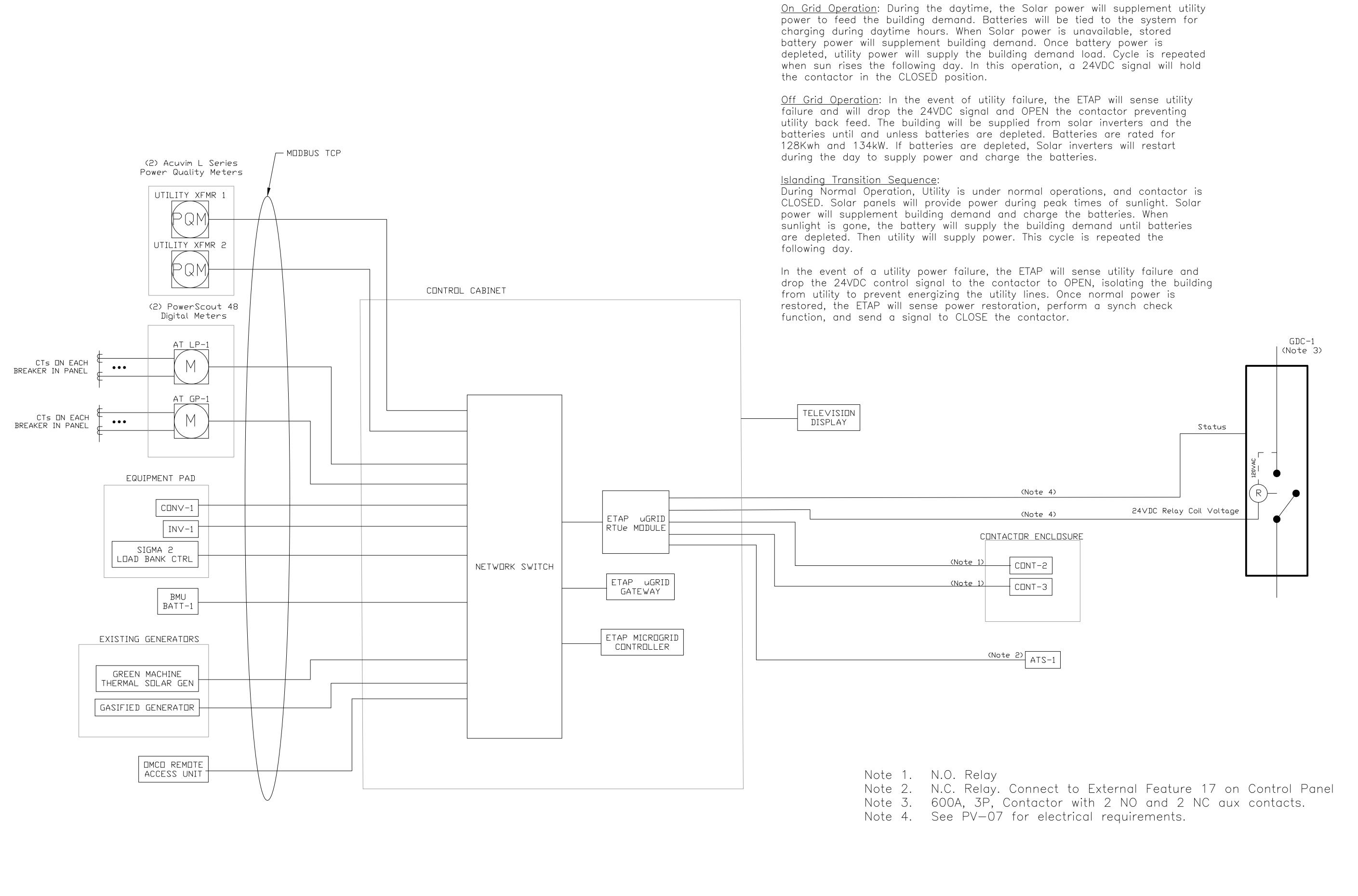
5804 River Oaks Rd S Elmwood, LA 70123 1-504-267-1660

General Notes MICROGRID SYSTEM WITH GROUND MOUNT PV

TABLE OF CONTENTS PV-1.0 COVER PAGE PV-1.1 GENERAL NOTES PV-1.2 REFERENCE PV-2.0 SITE PLAN PV-3.0 SOLAR PLAN PV-3.1 STRING PLAN PV-3.2 SOLAR COMPONENTS PV-3.3 SOLAR COMPONENTS PV-3.4 SOLAR COMPONENTS PV-5.0 EQUIPMENT PLAN PV-5.1 PAD LAYOUT PV-5.2 PAD DETAILS PV-5.3 EQUIPMENT ROOM DETAIL

PV-5.7 OUTDOOR WALL ELEVATION PV-6.0 ELECTRICAL DIAGRAM PV-7.0 ELECTRICAL CALCULATIONS PV-8.0 COMMUNICATIONS DIAGRAM PV-9.0 PANELBOARDS PV-10.0 EQUIPMENT DATA SHEETS

PV-5.4 EQUIPMENT ROOM ELEVATION


PV-5.5 EQUIPMENT ROOM ELEVATION PV-5.6 EQUIPMENT ROOM ELEVATION

	Revisions								
No.	Issue	Date							
110822	REVIEW								
120222	REVIEW								
121222	REVIEW								
122022	REVIEW								
090823	BID SET								
092023	PAD UPDATE								

Project Name and Address

UNIVERSITY OF LOUISIANA AT LAFAYETTE-CLECO POWER 2008 HUTCHINSON AVE CROWLEY, LA 70526

Drawn By Andrea Lee, Nick Boyd	Sheet
Date 09/15/2022	P\/7 (
Scale N/A	

Communications Diagram

5804 River Oaks Rd S
Elmwood, LA 70123
1-504-267-1660

General Notes

MICROGRID SYSTEM
WITH GROUND MOUNT PV

TABLE OF CONTENTS
PV-1.0 COVER PAGE
PV-1.1 GENERAL NOTES
PV-1.2 REFERENCE
PV-2.0 SITE PLAN
PV-3.0 SOLAR PLAN

PV-3.1 STRING PLAN
PV-3.2 SOLAR COMPONENTS
PV-3.3 SOLAR COMPONENTS

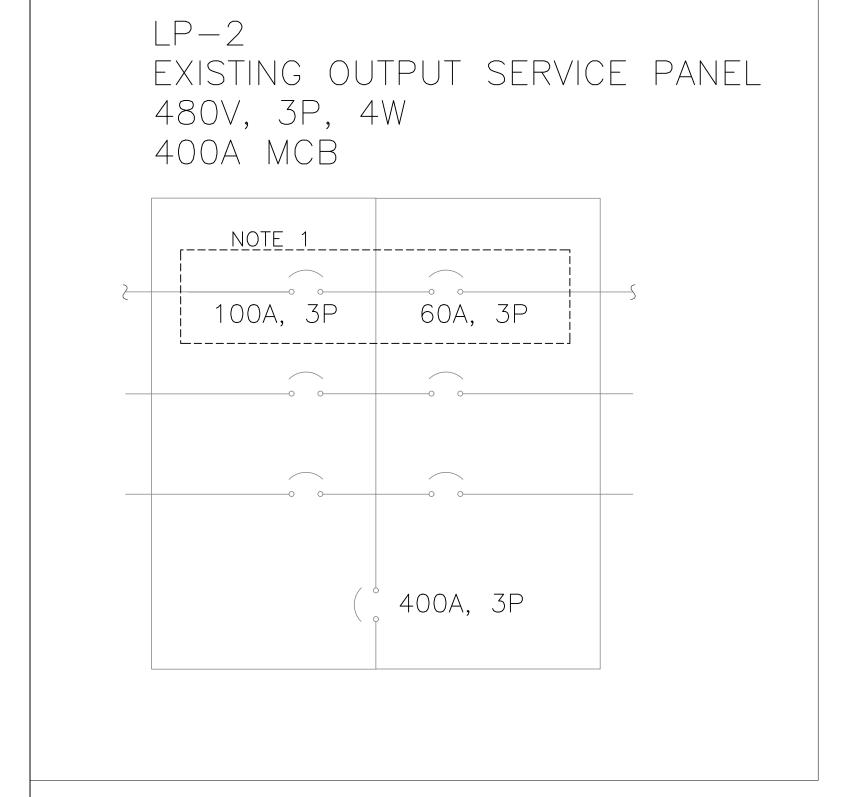
PV-3.4 SOLAR COMPONENTS PV-5.0 EQUIPMENT PLAN

PV-5.1 PAD LAYOUT PV-5.2 PAD DETAILS

PV-5.3 EQUIPMENT ROOM DETAIL PV-5.4 EQUIPMENT ROOM ELEVATION PV-5.5 EQUIPMENT ROOM ELEVATION

PV-5.6 EQUIPMENT ROOM ELEVATION PV-5.7 OUTDOOR WALL ELEVATION

PV-6.0 ELECTRICAL DIAGRAM
PV-7.0 ELECTRICAL CALCULATIONS
PV-8.0 COMMUNICATIONS DIAGRAM
PV-9.0 PANELBOARDS


PV-10.0 EQUIPMENT DATA SHEETS

Revisions								
No.	Issue	Date						
110822	REVIEW							
120222	REVIEW							
121222	REVIEW							
122022	REVIEW							
090823	BID SET							
092023	PAD UPDATE							

Project Name and Address

UNIVERSITY OF LOUISIANA AT LAFAYETTE—CLECO POWER 2008 HUTCHINSON AVE CROWLEY, LA 70526

Drawn By	Sheet
Andrea Lee, Nick Boyd	
Date 09/15/2022]PV-8.0
Scale	

	LP-2 Existing Output Service Panel Schedule											
Panel Voltage	480		Fed From		ary Trar 00kVA,		er	Manufacti	ırer/Model	Square [D / I-Line HCN146	54M
Panel Phase/Wire	3P/4V	W	Panel Type		MCB			Noto: Panal	to be abando	and with all o	circuits romoved	
Amp Rating	400		Location /Mounting	Out	side/Su	rface		Note: Panel to be abandoned with all circuits removed.				
CCT No.	Load Type	OCPD	Wire	Conduit	Phase A	Phase B	Phase C	Conduit	Wire	OCPD	Load Type	CCT No.
1	ORC Generator	100	(3) #3 W/G	1'-1/4"	X			1"	(3) #6 W/G	60	Gas Generator	2
3												4
5												6

NOTES
1. CIRCUITS RELOCATED TO GP-1

480V, 3P, 4W 400A MCB
400A, 3P
(400A, 3P

Panel Voltage	480		Fed From		ary Trai OOkVA,		er	Manufac	turer/Model	Square	D / I-Line HCN1465	54M
Panel Phase/Wire	3P/4\	V	Panel Type		МСВ						- · · · · · · · · · · · · · · · · · · ·	
Amp Rating	400		Location /Mounting	Out	side/Su	rface	Note: Panel to be abandoned with all circuits removed.					
CCT No.	Load Type	OCPD	Wire	Conduit	Phase A	Phase B	Phase C	Conduit	Wire	OCPD	Load Type	CCT No.
1												2
3												4
5								3"	(8) #2 W/G	400	Secondary Service	6

SOLAR

5804 River Oaks Rd S Elmwood, LA 70123 1-504-267-1660

General Notes

MICROGRID SYSTEM
WITH GROUND MOUNT PV

TABLE OF CONTENTS
PV-1.0 COVER PAGE
PV-1.1 GENERAL NOTES
PV-1.2 REFERENCE
PV-2.0 SITE PLAN
PV-3.0 SOLAR PLAN
PV-3.1 STRING PLAN

PV-3.2 SOLAR COMPONENTS PV-3.3 SOLAR COMPONENTS PV-3.4 SOLAR COMPONENTS

PV-5.0 EQUIPMENT PLAN PV-5.1 PAD LAYOUT PV-5.2 PAD DETAILS

PV-5.3 EQUIPMENT ROOM DETAIL PV-5.4 EQUIPMENT ROOM ELEVATION PV-5.5 EQUIPMENT ROOM ELEVATION

PV-5.6 EQUIPMENT ROOM ELEVATION
PV-5.7 OUTDOOR WALL ELEVATION
PV-6.0 ELECTRICAL DIAGRAM

PV-6.0 ELECTRICAL DIAGRAM
PV-7.0 ELECTRICAL CALCULATIONS
PV-8.0 COMMUNICATIONS DIAGRAM
PV-9.0 PANELBOARDS

PV-10.0 EQUIPMENT DATA SHEETS

No.	Issue	Date
110822	REVIEW	
120222	REVIEW	
121222	REVIEW	
122022	REVIEW	
090823	BID SET	
092023	PAD UPDATE	
	110822 120222 121222 122022 090823	110822 REVIEW 120222 REVIEW 121222 REVIEW 122022 REVIEW 090823 BID SET

Project Name and Address

UNIVERSITY OF LOUISIANA AT LAFAYETTE—CLECO POWER 2008 HUTCHINSON AVE CROWLEY, LA 70526

Drawn By ndrea Lee, Nick Boyd	Sheet
Date 09/15/2022	PV-9.(
Scale	

Panelboards

EXISTING

CONFIDENTIALITY NOTICE: These plans and any documents transmitted with them may contain PRIVILEGED or CONFIDENTIAL information and may be read or used only by the intended recipient. If you are not the intended recipient, please be advised that you have received this in error and that any unauthorized review, distribution, printing, or copying of these Plans or any attached files is strictly prohibited.

LP-1 EXISTING LOAD PANEL, RELOCATED 480V, 3P, 4W 600A MCB

-	SPACE	150A, 3P	
-	SPACE	SPACE	
-	SPACE	SPACE	
)	0 0	• •	
	SPACE	SPACE	
)	• •	• •	
	SPACE	SPACE	
-	SPACE	SPACE	
-	SDACE	SPACE	
	SPACE	SPACE	
)	0 0	• •	
	SPACE	SPACE	
)	0 0	· · ·	
	20A, 3P	SPACE	
-	30A, 3P	SPACE	
	JOA, J1	317(32	
)	0 0	• •	
	50A, 3P	SPACE	
-	15A, 3P	 250A, 3P	
	, c, ,		
-	004 70	· · · · · · · · · · · · · · · · · · ·	
	20A, 3P	SPACE	
-	· · ·	0 0	
	30A, 3P	SPACE	
-			+5
	600A, 3P	150A, 3P	

					М								
Panel Voltage	480		Fed From	Second [5	lary Transforn 500kVA, 3P]	ner	Manufact	urer/Model	Square	D / I-Line HCP 112	<u> </u>		
Panel Phase/Wire	3P/4W		Panel Type		MCB		Note: Panel to be disconnected		ected caref	carefully and relocated into the			
Amp Rating	600		Location /Mounting	Out	side/Surface		building, hun	g on adjacent	t wall, and labeled "AC Load Panel"				
CCT No.	Load Type	OCPD	Wire	Conduit	Phase Phase A B	e Phase C	Conduit	Wire	OCPD	Load Type	CCT No.		
1	Space				X		1'-1/4"	(3) #2 W/G	150	Transformer (75kVA, 120/208)	2		
3	"				X					"	4		
5	"					X				"	6		
7	Space				X					Space	8		
9	"				X					"	10		
11	"					X				"	12		
13	Space				X					Space	14		
15	"				X					"	16		
17	"					X				"	18		
19	Lab AH	20	(3) #12 W/G	1/2"	X					Space	20		
21	"				X					"	22		
23	"					X				"	24		
25	Office AH	30	(3) #10 W/G	3/4"	X					Space	26		
27	"				X					"	28		
29	"					X				"	30		
31	Lab AH — Hood Unit	50	(3) #8 W/G	3/4"	X					Space	32		
33	"				X					"	34		
35	,,					X				"	36		
37	Compressor	15	(3) #12 W/G	1/2"	X		2'-1/4"	(4) 250 MCM W/G	250	Panel "AH"	38		
39	"				X					"	40		
41	,,					X				"	42		
43	Compressor	20	(3) #12 W/G	1/2"	X					Space	44		
45	,,				X					"	46		
47	"					X				"	48		
49	Compressor	30	(3) #10 W/G	1/2"	X					Space	50		
51	,,		·		X					,,	52		
53	,,					X				"	54		
55	Main	600	(4) #3 W/G	3/4"	X		1'-1/4"	(3) #2 W/G	150	unknown	56		
57	"		·		X					"	58		
59	"					X				"	60		

General Notes

MICROGRID SYSTEM
WITH GROUND MOUNT PV

TABLE OF CONTENTS
PV-1.0 COVER PAGE
PV-1.1 GENERAL NOTES
PV-1.2 REFERENCE
PV-2.0 SITE PLAN
PV-3.0 SOLAR PLAN
PV-3.1 STRING PLAN

PV-3.2 SOLAR COMPONENTS PV-3.3 SOLAR COMPONENTS PV-3.4 SOLAR COMPONENTS

PV-5.0 EQUIPMENT PLAN PV-5.1 PAD LAYOUT

PV-5.2 PAD DETAILS
PV-5.3 EQUIPMENT ROOM DETAIL
PV-5.4 EQUIPMENT ROOM ELEVATION
PV-5.5 EQUIPMENT ROOM ELEVATION

PV-5.6 EQUIPMENT ROOM ELEVATION PV-5.7 OUTDOOR WALL ELEVATION PV-6.0 ELECTRICAL DIAGRAM

PV-8.0 ELECTRICAL DIAGRAM
PV-7.0 ELECTRICAL CALCULATIONS
PV-8.0 COMMUNICATIONS DIAGRAM
PV-9.0 PANELBOARDS

PV-10.0 EQUIPMENT DATA SHEETS

	Revisions								
No.	Issue	Date							
110822	REVIEW								
120222	REVIEW								
121222	REVIEW								
122022	REVIEW								
090823	BID SET								
092023	PAD UPDATE								
	•	•							

Project Name and Address

UNIVERSITY OF LOUISIANA AT LAFAYETTE—CLECO POWER 2008 HUTCHINSON AVE CROWLEY, LA 70526

Drawn By Andrea Lee, Nick Boyd

Scale

9/15/2022

SPACE	150A, 3P	
SPACE	SPACE	5
SPACE	SPACE	5
· · · · · ·	SPACE	
SPACE	SPACE	
SPACE	SPACE	
SPACE	SPACE	5
SPACE	SPACE	
SPACE	SPACE	
20A, 3P	40A, 3P	NOTE 1
30A, 3P	SPACE	5
• •	· · · · · · · · · · · · · · · · · · ·	
50A, 3P	SPACE	
15A, 3P	250A, 3P	
• • •		
20A, 3P	SPACE	
30A, 3P	SPACE	
600A, 3P	150A, 3P	5

				New AC Lo	ad Panel "LP-	-600" S	Schedule				
Panel Voltage	480		Fed From	Second	dary Transform 500kVA, 3P]	ner	Manufact	urer/Model	Square	D / I-Line HCP 112	 253
Panel Phase/Wire	3P/4W	l	Panel Type		мсв		Noto: Forms	er "Input Service	o" Panal		
Amp Rating	600		Location /Mounting	lns	side/Surface		Note. Forme	r input Service	e Panei.		
CCT No.	Load Type	OCPD	Wire	Conduit	Phase Phase A B	e Phase C	Conduit	Wire	OCPD	Load Type	CCT No.
1	Space				X		1'-1/4"	(3) #2 W/G	150	Transformer (75kVA, 120/208)	2
3	"				X					"	4
5	"					X				,,	6
7	Space				X					Space	8
9	"				X					"	10
11	"					X				"	12
13	Space				Х					Space	14
15	"				X					"	16
17	"					X				,,	18
19	Lab AH	20	(3) #12 W/G	1/2"	X					Space	20
21	"				X					"	22
23	"					X				"	24
25	Office AH	30	(3) #10 W/G	3/4"	X		3/4"	(4) #8 W/G	40	EV Charger	26
27	"				X					"	28
29	,,					X				,,	30
31	Lab AH — Hood Unit	50	(3) #8 W/G	3/4"	X					Space	32
33	,,				X					"	34
35	,,					X				,,	36
37	Compressor	15	(3) #12 W/G	1/2"	X		2'-1/4"	(4) 250 MCM W/G	250	Panel "AH"	38
39	"				X					"	40
41	"					X				"	42
43	Compressor	20	(3) #12 W/G	1/2"	X					Space	44
45	"				X					"	46
47	"					X				"	48
49	Compressor	30	(3) #10 W/G	1/2"	X					Space	50
51	"		, , , ,	·	X					"	52
53	"					X				"	54
55	Main	600	(4) #3 W/G	3/4"	X		1'-1/4"	(3) #2 W/G	150	unknown	56
57	"		, , , , , , , , , , , , , , , , , , ,	·	X		,	, , , , ,		"	58
59	"					X				"	60

NOTES 1. CIRCUIT ADDED

5804 River Oaks Rd S Elmwood, LA 70123 1-504-267-1660

General Notes

MICROGRID SYSTEM
WITH GROUND MOUNT PV

TABLE OF CONTENTS
PV-1.0 COVER PAGE
PV-1.1 GENERAL NOTES
PV-1.2 REFERENCE
PV-2.0 SITE PLAN
PV-3.0 SOLAR PLAN
PV-3.1 STRING PLAN

PV-3.2 SOLAR COMPONENTS
PV-3.3 SOLAR COMPONENTS
PV-3.4 SOLAR COMPONENTS
PV-5.0 FOLUPMENT PLAN

PV-5.0 EQUIPMENT PLAN PV-5.1 PAD LAYOUT PV-5.2 PAD DETAILS

PV-5.3 EQUIPMENT ROOM DETAIL
PV-5.4 EQUIPMENT ROOM ELEVATION
PV-5.5 EQUIPMENT ROOM ELEVATION

PV-5.6 EQUIPMENT ROOM ELEVATION PV-5.7 OUTDOOR WALL ELEVATION PV-6.0 ELECTRICAL DIAGRAM

PV-7.0 ELECTRICAL CALCULATIONS PV-8.0 COMMUNICATIONS DIAGRAM PV-9.0 PANELBOARDS PV-10.0 EQUIPMENT DATA SHEETS

No.	Issue	Date
110822	REVIEW	
120222	REVIEW	
121222	REVIEW	
122022	REVIEW	
090823	BID SET	
092023	PAD UPDATE	

Project Name and Address

UNIVERSITY OF LOUISIANA AT LAFAYETTE—CLECO POWER 2008 HUTCHINSON AVE CROWLEY, LA 70526

Drawn By
Andrea Lee, Nick Boyd

Date
09/15/2022

Panelboards

CONFIDENTIALITY NOTICE: These plans and any documents transmitted with them may contain PRIVILEGED or CONFIDENTIAL information and may be read or used only by the intended recipient. If you are not the intended recipient, please be advised that you have received this in error ad that any unauthorized review, distribution, printing, or copying of these Plans or any attached files is strictly prohibited.

PLANNED

		600A, 3P
2—	50A, 3P	200A, 3P
<u>}</u>	100A, 3P 60A, 3P	SPACE SPACE
2	150A, 3P	SPACE

NOTES 1. CIRCUITS RELOCATED FROM LP-2

			Ne	w AC Gene	ration Po	anel "G	P-600	" Schedule				
Panel Voltage	480		Fed From	Secon	dary Trar 500kVA,	nsforme 3P]	er	Manufacti	urer/Model	Square [D / I-Line HCN146	54M
Panel Phase/Wire	3P/4V	V	Panel Type		MCB			 Note: 600A	MCB. New load	ds and existin	ng loads relocated t	from
Amp Rating	800		Location /Mounting	ln	side/Sur	face		Panel "AH".				
CCT No.	Load Type	OCPD	Wire	Conduit	Phase A	Phase B	Phase C	Conduit	Wire	OCPD	Load Type	CCT No.
1	AC Test Bed	50	(4) #8 W/G	3/4"	X			2"	(3) 2/0 W/G	200	DynaPower Inverter	2
3	"					X					"	4
5	"						X				"	6
7	ORC Generator	100	(4) #2 W/G	1"	X						Space	8
9	"					X					"	10
_ 11	"						X				,,	12
13	Gas Generator	60	(4) #6 W/G	1"	X						Space	14
15	"					X					"	16
17	"						X				"	18
19	AC Load Bank	150	(4) 2/0 W/G	2"	X						Space	20
21	"										"	22
23	"										,,	24

5804 River Oaks Rd S
Elmwood, LA 70123
1-504-267-1660

General Notes

MICROGRID SYSTEM
WITH GROUND MOUNT PV

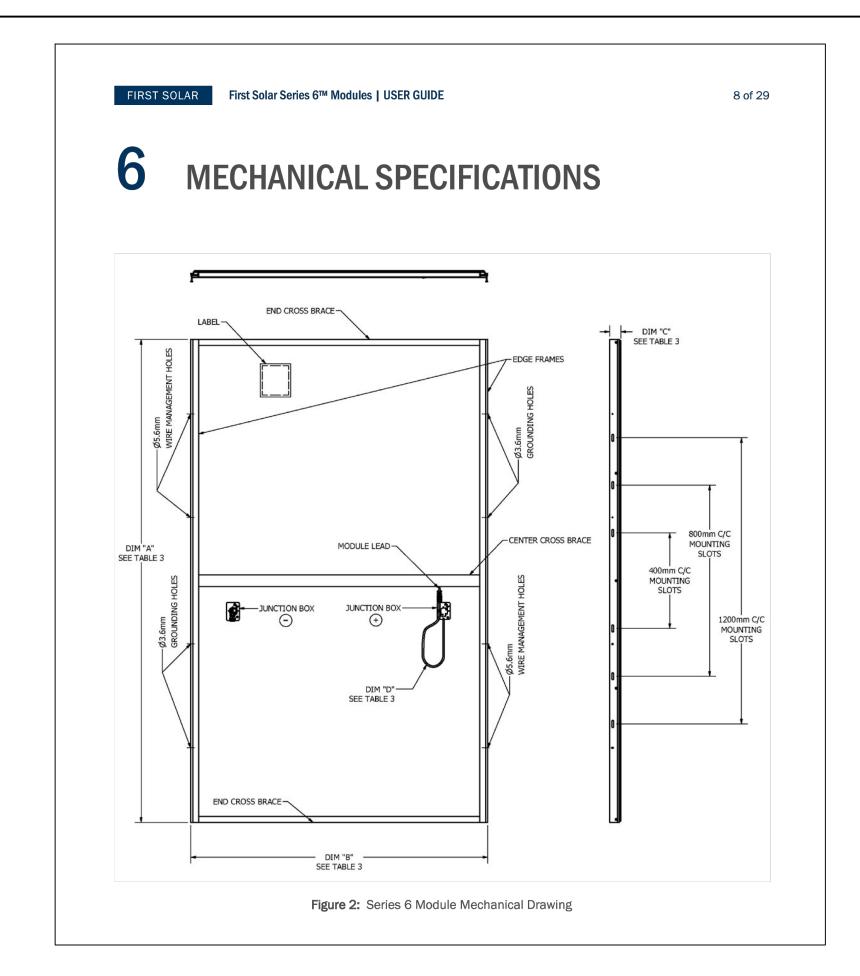
TABLE OF CONTENTS PV-1.0 COVER PAGE PV-1.1 GENERAL NOTES PV-1.2 REFERENCE PV-2.0 SITE PLAN PV-3.0 SOLAR PLAN PV-3.1 STRING PLAN PV-3.2 SOLAR COMPONENTS PV-3.3 SOLAR COMPONENTS PV-3.4 SOLAR COMPONENTS PV-5.0 EQUIPMENT PLAN PV-5.1 PAD LAYOUT PV-5.2 PAD DETAILS PV-5.3 EQUIPMENT ROOM DETAIL PV-5.4 EQUIPMENT ROOM ELEVATION PV-5.5 EQUIPMENT ROOM ELEVATION PV-5.6 EQUIPMENT ROOM ELEVATION PV-5.7 OUTDOOR WALL ELEVATION PV-6.0 ELECTRICAL DIAGRAM

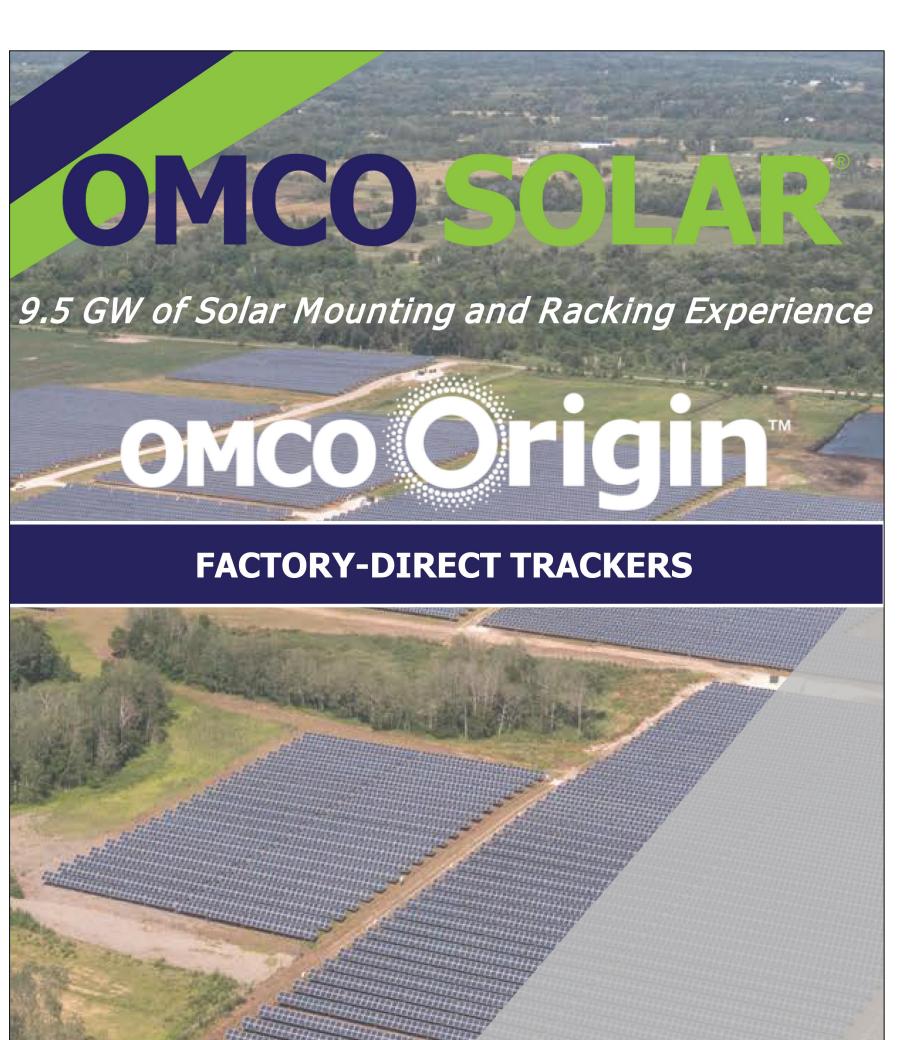
	Revisions	
No.	Issue	Date
110822	REVIEW	
120222	REVIEW	
121222	REVIEW	
122022	REVIEW	
090823	BID SET	
092023	PAD UPDATE	
	•	

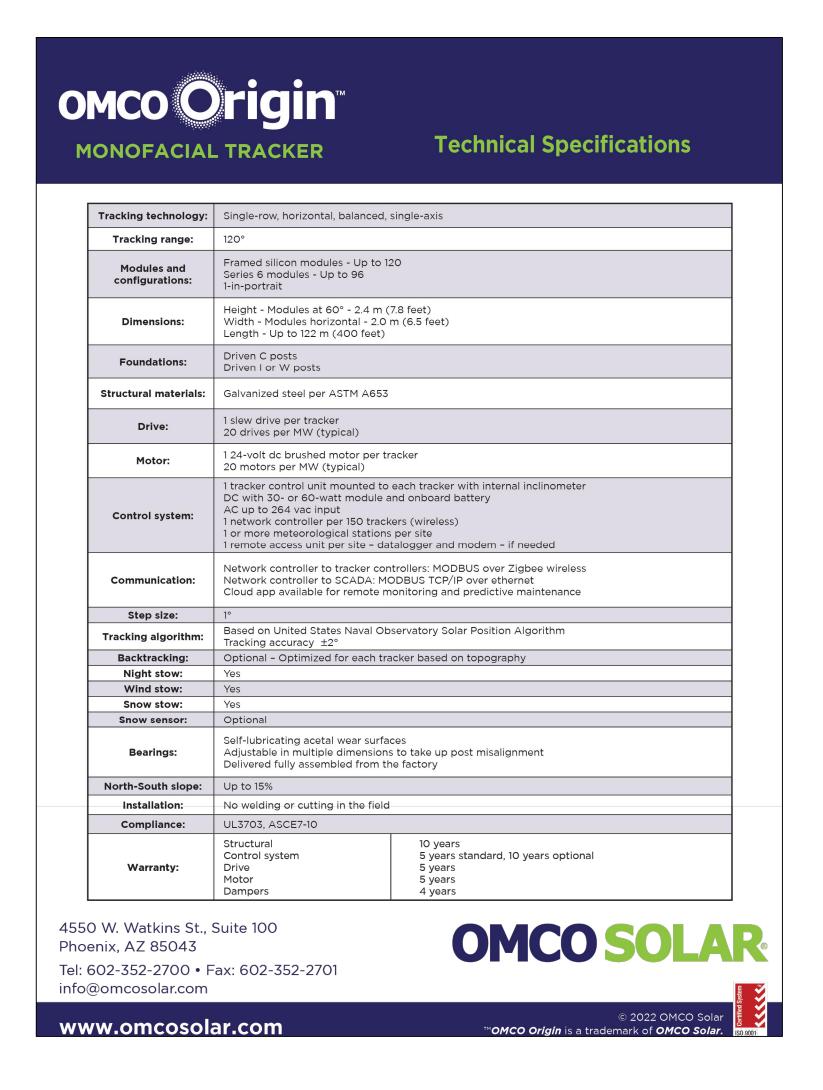
PV-7.0 ELECTRICAL CALCULATIONS

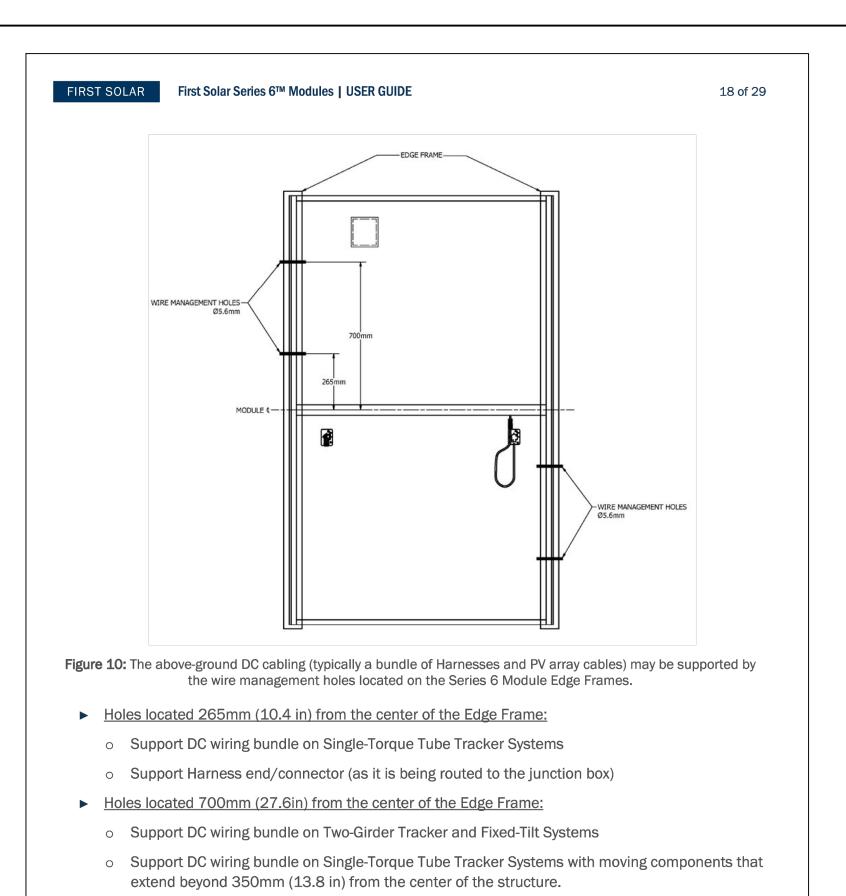
PV-8.0 COMMUNICATIONS DIAGRAM

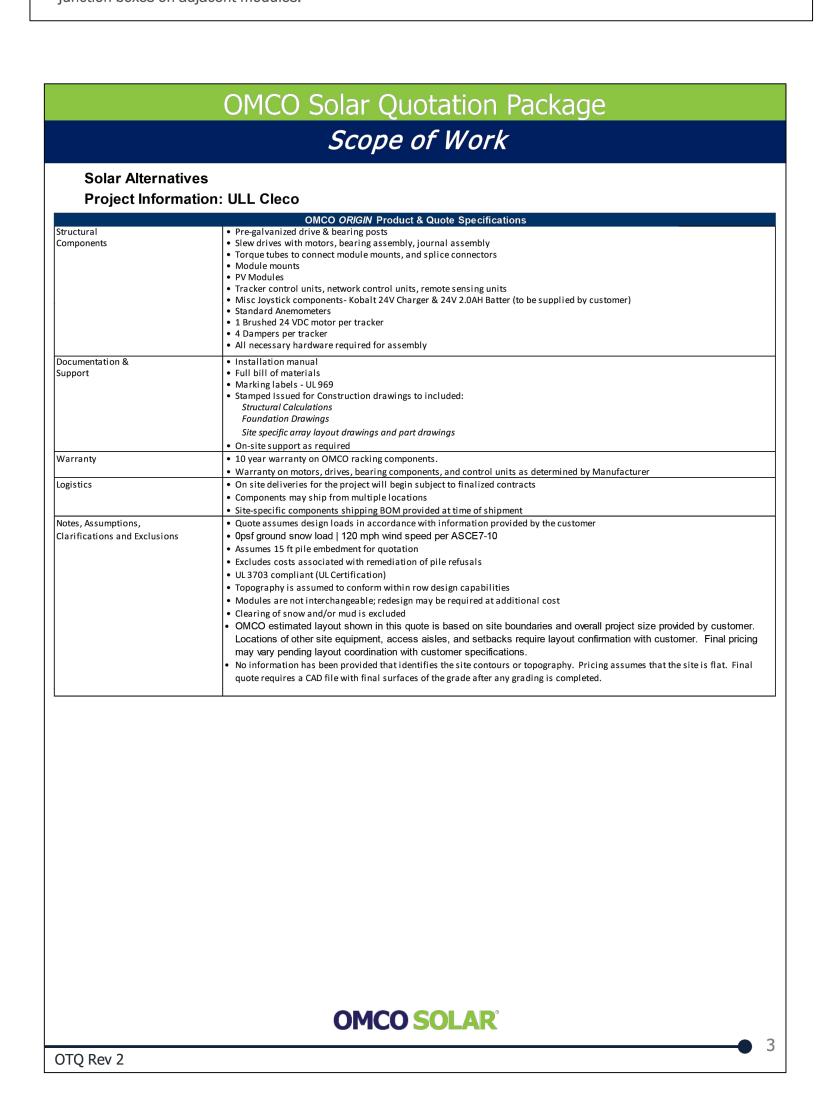
PV-10.0 EQUIPMENT DATA SHEETS


PV-9.0 PANELBOARDS


Project Name and Address


UNIVERSITY OF LOUISIANA AT LAFAYETTE—CLECO POWER 2008 HUTCHINSON AVE CROWLEY, LA 70526


Drawn By drea Lee, Nick Boyd	Sheet
Date 09/15/2022	PV-9.5
Scale N. /A	_ , _



Typically, the lead wire connection does not require wire retention or securement due to the proximity of the junction boxes on adjacent modules.

5804 River Oaks Rd S Elmwood, LA 70123 1-504-267-1660

General Notes

MICROGRID SYSTEM
WITH GROUND MOUNT PV

TABLE OF CONTENTS
PV-1.0 COVER PAGE
PV-1.1 GENERAL NOTES
PV-1.2 REFERENCE
PV-2.0 SITE PLAN
PV-3.0 SOLAR PLAN

PV-3.1 STRING PLAN
PV-3.2 SOLAR COMPONENTS
PV-3.3 SOLAR COMPONENTS

PV-3.4 SOLAR COMPONENTS PV-5.0 EQUIPMENT PLAN

PV-5.0 EQUIPMENT PLA PV-5.1 PAD LAYOUT

PV-5.1 PAD LAYOUT PV-5.2 PAD DETAILS

PV-5.3 EQUIPMENT ROOM DETAIL PV-5.4 EQUIPMENT ROOM ELEVATION

PV-5.5 EQUIPMENT ROOM ELEVATION PV-5.6 EQUIPMENT ROOM ELEVATION

PV-5.7 OUTDOOR WALL ELEVATION PV-6.0 ELECTRICAL DIAGRAM

PV-6.0 ELECTRICAL DIAGRAM
PV-7.0 ELECTRICAL CALCULATIONS

PV-8.0 COMMUNICATIONS DIAGRAM PV-9.0 PANELBOARDS

PV-10.0 EQUIPMENT DATA SHEETS

No.	Issue	Date
110822	REVIEW	
120222	REVIEW	
121222	REVIEW	
122022	REVIEW	
090823	BID SET	
092023	PAD UPDATE	
		•

Project Name and Address

UNIVERSITY OF LOUISIANA AT LAFAYETTE—CLECO POWER 2008 HUTCHINSON AVE CROWLEY, LA 70526

Drawn By
Andrea Lee, Nick Boy

Date

09/15/2022

Scale

PV-10.

4000 SERIES Model 4100

The Avtron Model 4100 are resistive, AC load banks designed for outdoor installation when up to 150 kW of resistive load is required.

LOAD BANK RATINGS

Standard capacity ratings of: • 50 kW • 125 kW 75 kW 150 kW

 100 kW Standard load step resolution of 5 kW. Select from standard three phase

voltage ratings of: 208-60Hz
 240/480-60Hz 240-60Hz 400-50Hz

• 480-60Hz • 600-60Hz Single phase 240 voltage is also

Please consult factory for non-standard ratings.

Blower Motor Control The blower motor is factory wired to the main load bus. If external blower connection is required, the factory installed wired must be removed. Refer to the load bank schematic for specific details. An external 120V, 1 Phase, 60 Hz supply is required for control circuit operation.

An optional step-down transformer is available to provide the required control power. The transformer receives its power from the blower motor circuit described

Cooling System

Approximately 5,000 CFM cooling is provided by integral TEFC or TEAO motor which is

The fan motor is fully protected with fuses, motor starter contractor, and overload relay.

The standard load control for the 4100 is a manual 19" rack mount panel. Controls include: Power On/Off switch, Blower Start/Stop push buttons, Master Load On/Off switch, and Individual Load Step switches. Visual indicators include: Power On, Blower

Other control options are available, please consult factory.

Construction

The 4100 is constructed using heavy gauge aluminized steel per ASTM A463. It is designed for continuous outdoor weatherproof operation. Forklift channels are provided in the base

All exterior fasteners are stainless steel. The main input bus, load step relays, fuses, and located in the main enclosure. The 4100 load bank is listed to UL standard 508A.

The 4100 has a high quality baked polyester powder coated finish with a film thickness of 2.8 +/- 0.4 mils per coat. The standard color is gray (ANSI 61).

Two Year Warranty Included The equipment is covered by an industry exclusive 24-month parts and labor warranty.

Resistor Elements

Avtron load banks use helically wound chromium alloy Helidyne elements. Elements are fully supported across their entire length by segmented ceramic insulators on stainless steel rods. These elements are designed to operate at approximately 1/2 of their maximum continuous wire rating.

Model 4100 Specifications

Elements are positioned within the cooling airstream for optimal performance. Changes in resistance due to temperature are minimized by maintaining conservative watt densities.

The overall load tolerance of the 4100 load bank is -0, +5%. This ensures that advertised kW is delivered at rated

The elements are continuously rated at

the specific voltage. Tests at lower voltages, with a corresponding reduction in overall rating, may be carried out.

Safety Features

A differential pressure switch is interlocked with the load application controls to prevent load from being supplied if cooling air is not present.

An overtemperature switch is provide to sense the load bank exhaust. The switch is interlocked with the load application controls to disable load from being supplied if an over-temperature condition is present. The fan motor is protected with fuses

and overloads. Major fault protection is provided by branch circuit fuse protection. Fuse protection is provided on all load steps. The exterior of the load bank has appropriate warning and caution statements

on access panels. Internal access is restricted by bolt on exterior panels.

The air intake on the 4100 is designed to prevent objects greater than 0.50" diameter from being ingested into the unit. Horizontal air discharge is provided and exhaust air is directed downward away from personnel.

6255 Halle Drive, Cleveland, Ohio 44125, U.S.A.

MPS-125 Energy Storage Inverter

microgrid inverter

This parallelable 125kW energy storage

inverter is transformer-less, air-cooled,

and compact, and optimized for behind-

the-meter energy storage applications.

Featuring a highly efficient three-level topology, the MPS-125 is easily integrated into customer supplied battery storage systems or can be supplied as part of

Dynapower's fully-integrated MPS-i energy storage system. Multiple MPS-125 energy storage inverters can be paralleled together

to scale to meet the needs of any behindthe-meter energy storage installation.


With all the functional capabilities of the

supports frequency, voltage, and VAR

support applications.

grid-scale CPS inverter family, the MPS-125

The world's most capable

Ambient Temperature Documentation Operating Manual

The 4100 load bank is designed for continuous duty cycle with no limitations. The A comprehensive operator's manual is ambient temperatures range is -20°F to supplied electronically via a USB drive. 120°F (-28°C to 50°C). Sections include: Safety, Installation, Operation, Maintenance, and Trouble-

The 4100 is designed for outdoor installation on a concrete pad or structural base.

Power Terminals and Cable Entry The power terminals are located behind a removable, bolt on access panel. The 4100 has a recommended conduit entry area underneath the power terminal assembly to facilitate load cable installation.

Optional Accessories Control Power Transformer NEMA 4 Type Control Panel Enclosure

 Automatic Load Control Digital Metering with Data Logging SIGMA 2 Digital Controls Remote I/O Control

Pilot Relay Control

Arctic Rating (low temperature)

LBsales@ascopower.com • 1-216-573-7600 ©2022 Avtron Power Solutions. Publication 5517• Rev. D

DYNAP WER

DYNAPOWER

POWERING A CLEANER PLANET™

All dimensions are in inches [millimeters]. Specifications subject to change without notice.

Testing and Standards

Weight and Dimensions

Avtron load banks comply with NEMA,

NEC, and ANSI standards. Quality control

system is certified to ISO9001 standards.

48/1219 27/685 35/889 500/227

DPS-500 DC-DC Converter

TECHNICAL SPECIFICATIONS

Electrical	
DC Input Voltage Range (Battery Port):	100-1500V _{DC}
DC Input Voltage Range (PV Port):	100-1500V _{DO}
Maximum Power Rating:	500kW (@1000V _{DC}) 600kW (@1200-1500V _{DC})
Maximum Current Rating:	+/-500A _{DO}
Maximum Efficiency:	99%
Average Efficiency:	98.2%
Aux/Controls Power: Custome	r supplied 120V, 1-ph, 60Hz, 1kVA service

Operating Temp:	-25 to +55°C
Cooling:	Forced Air Cooled
Enclosure:	UL 3R/IP 54
Max Elevation:	1000 Meters Full Power 3000 Meters with Derating
Dimensions (L x W x H):	33.5" x 39.4" x 80.5
Weight:	1300 lbs
Cable Connections:	Side or bottom entry

Customer supplied 230V, 1-ph, 50Hz

1kVA service

Certifications & Standards Compliance

UL 1741	
CSA C22.2 #107.1	
UL / IEC 62109-1	
IEC / EN 61000-6-4	
IEC / EN 61000-6-2	
CISPR 11 / EN 55011	
FCC Part 15 Class A	
IEEE Std C37.90,2	

DC Contactor and Precharge on Battery Port					
Software Protections					

Over-temperature Fuse monitoring

> Local Indicators: Lamps on front panel indicating operation mode & alarm/fault status

DYNAPWER

85 Meadowland Drive, South Burlington, Vermont USA 05403

Hardware Protections

DC Over-voltage and Under-voltage

DC Over-current

Remote Communications: Modbus TCP/IP

With our patented Dynamic Transfer™ feature, the MPS-125 inverter monitors grid stability and will automatically disconnect and transition to stand-alone mode if a grid disturbance is detected, ensuring consistent power to critical loads.

Key Technologies

- Islanded Operation (UF Mode)
- Dynamic Transfer
- Black Start
- Frequency Compensation Mode (F-Comp)
- Volt-Var Compensation Mode (E-Comp)

DYNAPOWER

O O O

AO

DPS-500 DC-DC Converter

Maximize PV generation and revenue with DC-coupled energy storage

FOR UTILITY-SCALE SOLAR **PLUS STORAGE**

PV power plants.

This bi-directional 500kW DC-DC converter is designed to interface battery energy storage with new and existing 1000V and 1500V central inverter-based

The DPS-500 is ideal for utility-scale solar plus storage installations, offering advanced features including automated clipping recapture and low voltage harvesting that increase project revenues, while its DC-coupled architecture reduces

installation and regulatory costs. This DC-DC converter can operate in voltage, current, and power control modes, and is capable of on-the-fly switching between modes. Designed to be easily scaled, any combination of up to six units can be paralleled together to create building blocks of up to 3MW of storage power.

Key Technologies

- Clipping Recapture
- Low Voltage Harvesting Curtailment Recapture

Ramp Rate Control

Energy Time Shifting

System Advantages:

- Reduce installation and regulatory costs through DC-coupled architecture
- Scalable storage power up to 3MW with paralleled units

MPS-125 Energy Storage Inverter

TECHNICAL SPECIFICATIONS

Electrical

AC Input Voltage:	480V _{AC} 3 Phase
Grid Frequency:	60 Hz
Rated Output Apparent Power:	125kVA
Rated Output Real Power:	125kW
Rated Output Current:	150A _{RMS}
Overload AC Current:	180A _{RMS}
DC Voltage Range:	740-1500V _{DC}
Max DC Current:	171A _{DC}
Power Factor:	0 - 1.00 Leading or Lagging
Current Harmonics:	IEEE 1547 Compliant, <5% TDD
Maximum Efficiency:	98.7%
CEC Efficiency:	97%

Environmental & Mechanical

Operating Temp:	-25 to +50°C, De-rated from +45 to +50°C
Cooling:	Forced Air Cooled
Enclosure:	UL 3R/IP 54
Max Elevation:	1000 Meters Full Powe Up to 3000 Meters with Derating
Dimensions (H x W x D):	36" x 28" x 15.25
Weight:	176 lb:

Certifications & Standards Compliance

UL 1741 SA	IEEE 519
IEEE 1547	CSA 22.2 #107.1
NFPA 70	
Hardware Protect	tions

Hardware Protections

AC Breaker with Shunt Trip AC Surge Protection DC Disconnect DC Input Fuses DC Pre-charge (Optional)

Software Protections

AC C	urrent Limiting Pending
DC C	ver/Under Voltage, Over Current faults
AC O	ver/Under Voltage, Over/Under Frequency, Over Current faults
Anti-i	slanding Protection (Open Phase at inverter terminals)
Temp	perature Monitoring and protective power curtailment
Watc	hdog Timer to detect loss of communications

Project Name and Address

5804 River Oaks Rd S

Elmwood, LA 70123

General Notes

MICROGRID SYSTEM

TABLE OF CONTENTS

PV-1.0 COVER PAGE

PV-1.2 REFERENCE

PV-2.0 SITE PLAN

PV-3.0 SOLAR PLAN

PV-3.1 STRING PLAN

PV-5.1 PAD LAYOUT

PV-5.2 PAD DETAILS

PV-3.2 SOLAR COMPONENTS

PV-3.3 SOLAR COMPONENTS

PV-3.4 SOLAR COMPONENTS

PV-5.3 EQUIPMENT ROOM DETAIL

PV-5.4 EQUIPMENT ROOM ELEVATION

PV-5.5 EQUIPMENT ROOM ELEVATION

PV-5.6 EQUIPMENT ROOM ELEVATION

PV-5.7 OUTDOOR WALL ELEVATION

PV-7.0 ELECTRICAL CALCULATIONS

PV-8.0 COMMUNICATIONS DIAGRAM

PV-10.0 FQUIPMENT DATA SHEFTS

Revisions

Issue

REVIEW

REVIEW

REVIEW

REVIEW

BID SET

PAD UPDATE

Date

PV-6.0 ELECTRICAL DIAGRAM

PV-9.0 PANELBOARDS

No.

110822

120222

121222

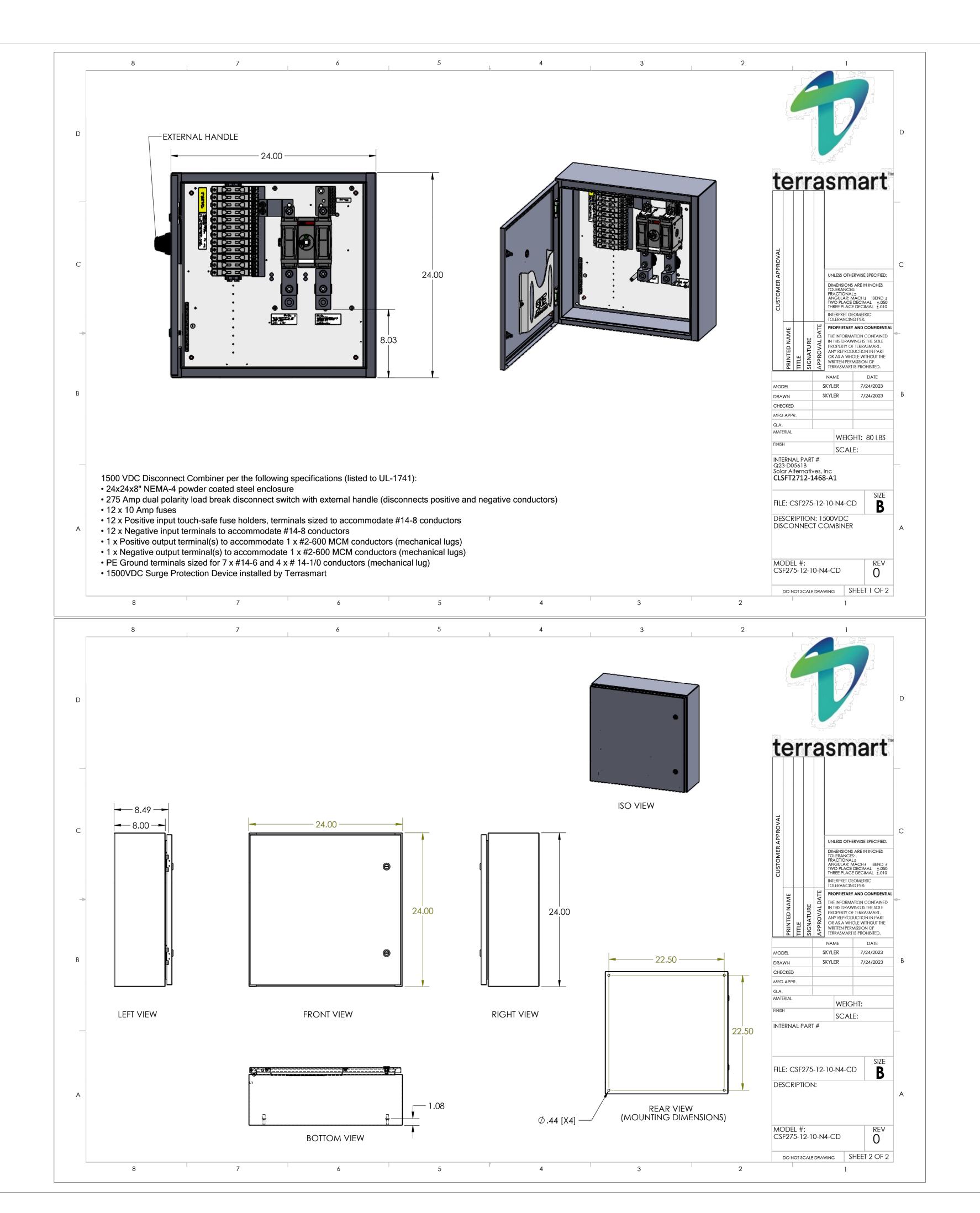
122022

090823

092023

PV-5.0 EQUIPMENT PLAN

PV-1.1 GENERAL NOTES


WITH GROUND MOUNT PV

1-504-267-1660

UNIVERSITY OF LOUISIANA AT LAFAYETTE-CLECO POWER 2008 HUTCHINSON AVE CROWLEY, LA 70526

Andrea	,	Nick	Во
Date	09/	15/20	022
Scale			

Equipment Data Sheets

General Notes

MICROGRID SYSTEM
WITH GROUND MOUNT PV

TABLE OF CONTENTS PV-1.0 COVER PAGE PV-1.1 GENERAL NOTES PV-1.2 REFERENCE PV-2.0 SITE PLAN PV-3.0 SOLAR PLAN PV-3.1 STRING PLAN PV-3.2 SOLAR COMPONENTS PV-3.3 SOLAR COMPONENTS PV-3.4 SOLAR COMPONENTS PV-5.0 EQUIPMENT PLAN PV-5.1 PAD LAYOUT PV-5.2 PAD DETAILS PV-5.3 EQUIPMENT ROOM DETAIL PV-5.4 EQUIPMENT ROOM ELEVATION PV-5.5 EQUIPMENT ROOM ELEVATION PV-5.6 EQUIPMENT ROOM ELEVATION PV-5.7 OUTDOOR WALL ELEVATION PV-6.0 ELECTRICAL DIAGRAM PV-7.0 ELECTRICAL CALCULATIONS

Revisions					
No.	Issue	Date			
110822	REVIEW				
120222	REVIEW				
121222	REVIEW				
122022	REVIEW				
090823	BID SET				
092023	PAD UPDATE				

PV-8.0 COMMUNICATIONS DIAGRAM

PV-10.0 EQUIPMENT DATA SHEETS

PV-9.0 PANELBOARDS

Project Name and Address

UNIVERSITY OF LOUISIANA AT LAFAYETTE—CLECO POWER 2008 HUTCHINSON AVE CROWLEY, LA 70526

Drawn By
Andrea Lee, Nick Boyd

Date
09/15/2022

Scale

5/2022

ASCO SERIES 300 ORDERING INFORMATION

To order an ASCO SERIES 300 Power Transfer Switch, complete the following catalog number:

FRAME	TRANSITION TYPE	NEUTRAL CODE	PHASE POLES	AMPERES	VOLTAGE CODE	GROUP CODE	ENCLOSURE
Open Transition D = 30A - 230A Open/Delayed Transition J = 150A - 600A H = 800A - 1200A G = 1600A - 3000A	Automatic 03ATS Open Transition 3ADTS Delayed Transition Non Automatic 03NTS Open Transition 3NDTS Delayed Transition	A = Solid Neutral B = Switched Neutral	2 3	0030 ¹ 0070 ¹ 0104 ¹ 0150 ^{1, 4} 0200 ^{1, 3, 4} 0230 ^{1, 3, 4} 0260 ^{1, 4} 0400 ^{1, 4} 0600 ¹ 0800 ⁴ 1200 ^{4, 5} 1600 ^{4, 5} 2000 ^{4, 5} 2600 ^{4, 5} 3000 ^{4, 5}	A ² = 115 B ² = 120 C = 208 D = 220 E = 230 F = 240 H = 380 J = 400 K = 415 L = 440 M = 460 N = 480 P = 550 Q = 575 R = 600	G0 No Optional Accessories GX Optional Accessories	0 = Open Type (zero) C = Type 1 Enclosure F = Type 3R ^{8,9} Enclosure G = Type 4 ⁸ Enclosure H = Type 4X ⁸ Enclosure (304 Stainless Steel) L = Type 12 Enclosure M = Type 3R ^{8,9} Secure Double-Door Enclosure N = Type 4 ⁸ Secure Double-Door Enclosure Q = Type 12 Secure Double-Door Enclosure R = Type 3RX ^{7,8,9} Secure Double-Door Enclosure (304 Stainless Steel) S = Type 3RX ^{7,8,9} Secure Double-Door Enclosure (316 Stainless Steel) U = Type 4X ⁸ Enclosure (316 Stainless Steel) V = Type 4X ⁸ Secure Double-Door Enclosure (316 Stainless Steel)

Notes:

ABB MOTOR PROTECTION AND CONTROL

Main accessory fitting details - for ordering details, technical data and other accessories: see section accessories

AF09 ... AF96 3-pole contactors

Contactors and main accessories

AF09(Z) ... AF38(Z) (1)

AF40 ... AF96

AF09Z ... AF38Z 24 V DC designed for PLC - coil 30 (1)

Overload relays fitting details (4)

- Notes:

 1. Switch sizes 30-600 amperes supplied in non-secure enclosures as standard.
- 115-120 volt available for 30-400 amperes only. For other voltages contact ASCO.
 200 and 230 amperes rated switches for use with copper cable only.
- 200 and 230 amperes rated switches for use with copper cable only.
 Switch sizes 800-3000 amperes, and 150-400 amperes 3ADTS/3NDTS provided in secure type outdoor enclosures when required.
- Use Type 3R secure for 1200, 2000, 2600, and 3000.
 Type 304 stainless steel is standard. Suitable for indoor or outdoor use where there may be caustic or alkali chemicals in use. To provide an improved reduction in corrosion of salt and some chemicals, optional type 316 stainless steel is recommended. This is the preferred choice for marine environments.
- 7. Available on switches rated 1200, 2000, 2600, and 3000 amperes.
- 8. When temperatures below 32°F can be experienced, special precautions should be taken, such as the inclusion of strip heaters, to prevent condensation and freezing of this condensation. This is particularly important when environmental enclosures (Type 3R, 4) are ordered for outdoor applications
- Type 3R enclosures are not suitable for installations subject to wind blown rain or snow. Use Type 4 enclosures where available or install supplemental shelter protection around the 3R enclosure.

SERIES 300 EXTERNAL POWER CONNECTIONS Size UL Listed Solderless Screw-Type Terminals

JIZO OL LIGICO CON	acricoo corew Type Terrimiais	
SWITCH RATING (AMPERES)	RANGES OF AL-CU WIRE SIZES (UNLESS SPECIFIED COPPER ONLY)	
30-230 ¹ ATS and NTS only	One #14 to 4/0 AWG	
150², 260, 400	Two 1/0 AWG to 250 MCM or One #4 AWG to 600 MCM	Notes:
600	Two 2/0 AWG to 600 MCM	All SERIES 300 switches are furnished with a solid neutral plate (unless switched neutral configuration is specified) and terminal lugs.
800, 1000, 1200	Four 1/0 to 600 MCM	Use wire rated 75°C minimum for all power connections.
1600, 2000	Six 1/0 to 600 MCM	200 and 230 amperes rated switches for use with copper cable only. Refer to paragraph 310.15 of the NEC for additional information.
2600, 3000	Twelve 1/0 to 750 MCM	150 for DTS only.

SERIES 300 Transfer Switch Dimensions and Shipping Weights

DIMENSIONS, IN. (MM)²

UL Type 1 Enclosure*

SWITCH RATING		NEUTRAL	Dir	VIENSIONS, IN. (IV	IIVI)*	APPROX. SHIPPING
AMPS		CODE ¹	WIDTH	HEIGHT	DEPTH	WEIGHT LB. (KG)
	2	А	18 (457)	31 (787)	13 (330)	69 (32)
30³,70³,104³	2	В	18 (457)	31 (787)	13 (330)	72 (33)
150³, 200³	3	Α	18 (457)	31 (787)	13 (330)	72 (33)
	3	В	18 (457)	31 (787)	13 (330)	75 (34)
	2	А	18 (457)	48 (1219)	13 (330)	117 (53)
000	2	В	18 (457)	48 (1219)	13 (330)	125 (57)
230	3	А	18 (457)	48 (1219)	13 (330)	125 (57)
	3	В	18 (457)	48 (1219)	13 (330)	133 (61)
	2	А	24 (610)	56 (1422)	14 (356)	250 (113)
000 400	2	В	24 (610)	56 (1422)	14 (356)	260 (118)
260, 400	3	А	24 (610)	56 (1422)	14 (356)	260 (118)
	3	В	24 (610)	56 (1422)	14 (356)	270 (123)
	2	А	24 (610)	56 (1422)	14 (356)	250 (113)
150, 200, 230	2	В	24 (610)	56 (1422)	14 (356)	260 (118)
SERIES 3ADTS/3NTS only	3	А	24 (610)	56 (1422)	14 (356)	260 (118)
, ,	3	В	24 (610)	56 (1422)	14 (356)	270 (123)
	2	А	24 (610)	63 (1600)	17 (432)	300 (137)
200	2	В	24 (610)	63 (1600)	17 (432)	320 (146)
600	3	А	24 (610)	63 (1600)	17 (432)	320 (146)
	3	В	24 (610)	63 (1600)	17 (432)	320 (151)
	2	А	34 (864)	72 (1829)	20 (508)	431 (196)
	2	В	34 (864)	72 (1829)	20 (508)	460 (209)
800, 1000	3	А	34 (864)	72 (1829)	20 (508)	460 (209)
	3	В	34 (864)	72 (1829)	20 (508)	489 (222)
	2	Α	38 (965)	87 (2210)	23 (584)	581 (264)
1000	2	В	38 (965)	87 (2210)	23 (584)	611 (277)
1200	3	А	38 (965)	87 (2210)	23 (584)	611 (277)
	3	В	38 (965)	87 (2210)	23 (584)	639 (290)
4600 2000	3	А	38 (965)	87 (2210)	23 (584)	1160 (525)
1600, 2000	3	В	38 (965)	87 (2210)	23 (584)	1160 (525)
0000 00004	3	Α	38 (965)	91 (2311)	72 (1829)	1430 (649)
2600, 30004	3	В	38 (965)	91 (2311)	72 (1829)	1495 (679)

Noton

AF400 ... AF750 contactors are mainly used for controlling 3-phase motors and power circuits up

- can withstand short voltage dips and voltages sags (SEMI F47 conditions of use on request).

AF400-30-11 1SFL577001R6911

AF400-30-11 1SFL577001R7011

AF400-30-11 1SFL577001R7111

AF460-30-11 1SFL597001R6911

AF460-30-11 1SFL597001R7011

AF460-30-11 1SFL597001R7111

AF580-30-11 1SFL617001R6911

AF580-30-11 1SFL617001R7011

AF580-30-11 1SFL617001R7111

AF750-30-11 1SFL637001R6911

AF750-30-11 1SFL637001R7011

250...500 | 250...500 | 1 1 | AF750-30-11 | 1SFL637001R7111

AF400 ... AF750 are equipped with low voltage inputs for control, for example by a PLC.

AF580-30-11 1SFL617001R6811 (1)

AF460-30-11 1SFL597001R6811 (1)

to 1000 V AC or 600 V DC (2). These contactors are of the block type design with 3 main poles.

control circuit: AC or DC operated with electronic coil interface accepting a wide control

voltage range (e.g. 100...250 V AC and DC), only 4 coils to cover control voltages between

add-on auxiliary contact blocks for side mounting and a wide range of accessories.

48...130 48...130

100...250 100...250

250...500 250...500

48...130 48...130

ABB MOTOR PROTECTION AND CONTROL

AC / DC operated with 1 N.O. + 1 N.C. auxiliary contacts

48...500 V 50/60 Hz and 24...500 V DC

reduced panel energy consumption

very distinct closing and opening

built-in surge suppression

AC-3 690 V 480 V 600 V AC

(2) Up to 850 V DC for AF580, AF750.

Control inputs

- can manage large control voltage variations

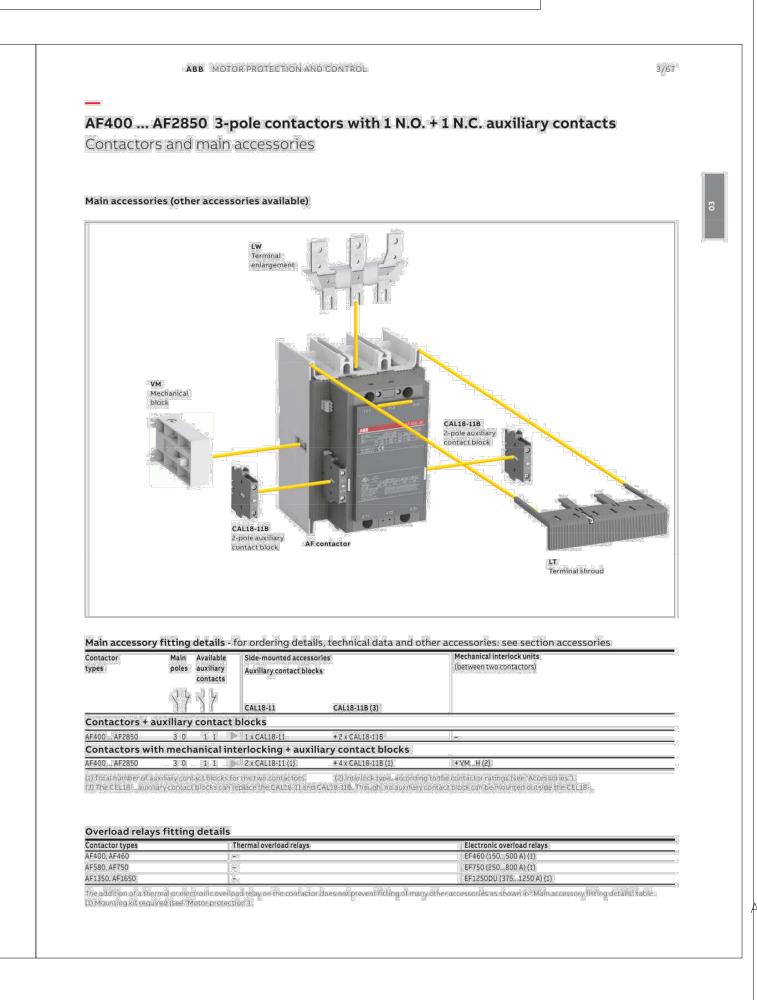
power current motor use Uc min. ... Uc max.

hp A V 50/60 Hz V DC

AF400 ... AF750 3-pole contactors

200 to 400 kW

AF460-30-11


AF750-30-11

- 1. Neutral Codes: 0=None, A=Solid, B=Switched
- Dimensional data is approximate and subject to change. Certified dimensions available upon request.
 Dimensions for 30-200 ampere models when fumished with accessory 135L power meter are 18"W x 41"H x 13"D.
- 4. Enclosures for 2600, 3000 amperes are free-standing with removable top, sides and back.
- * Unit is designed for top cable entry of emergency and load, and bottom entry of normal.

 A cable pull box is also available for all top or bottom cable access when required (optional accessory kit #K609027).

 Not required for type 3R. 4X. and 12 enclosures where available.

3

5804 River Oaks Rd S Elmwood, LA 70123 1-504-267-1660

General Notes

MICROGRID SYSTEM
WITH GROUND MOUNT PV

TABLE OF CONTENTS
PV-1.0 COVER PAGE
PV-1.1 GENERAL NOTES
PV-1.2 REFERENCE
PV-2.0 SITE PLAN
PV-3.0 SOLAR PLAN
PV-3.1 STRING PLAN
PV-3.2 SOLAR COMPONENTS
PV-3.3 SOLAR COMPONENTS
PV-3.4 SOLAR COMPONENTS
PV-5.0 EQUIPMENT PLAN
PV-5.1 PAD LAYOUT
PV-5.2 PAD DETAILS

PV-5.3 EQUIPMENT ROOM DETAIL
PV-5.4 EQUIPMENT ROOM ELEVATION
PV-5.5 EQUIPMENT ROOM ELEVATION

PV-5.6 EQUIPMENT ROOM ELEVATION
PV-5.7 OUTDOOR WALL ELEVATION
PV-6.0 ELECTRICAL DIACRAM

PV-6.0 ELECTRICAL DIAGRAM
PV-7.0 ELECTRICAL CALCULATIONS

PV-8.0 COMMUNICATIONS DIAGRAM PV-9.0 PANELBOARDS PV-10.0 EQUIPMENT DATA SHEETS

 Revisions

 No.
 Issue
 Date

 110822
 REVIEW

 120222
 REVIEW

 121222
 REVIEW

 122022
 REVIEW

 090823
 BID SET

 092023
 PAD UPDATE

Project Name and Address

UNIVERSITY OF LOUISIANA AT LAFAYETTE—CLECO POWER 2008 HUTCHINSON AVE CROWLEY, LA 70526

Drawn By
Andrea Lee, Nick Boyd

Date
09/15/2022

Scale
N/A

AF40, AF52, AF65

ABB MOTOR PROTECTION AND CONTROL

and 20...500 V DC

built-in surge suppression

- can manage large control voltage variations

reduced panel energy consumption

very distinct closing and opening

Rated operational 3-phase General voltage

480 V 600 V AC

θ ≤ 40 °C rating rating

power current motor use Uc min. ... Uc max.

22 100 40 80 24...60 20...60 (1) 48...130 48...130 100...250 100...250

37 125 60 105 24...60 20...60 (1) 48...130 48...130 100...250 100...250

45/55 130 60/75 115 24...60 20...60 (1)

(1) For control by PLC-output, use RA4 interface relay.

V 50/60 Hz | V DC | 24...60 | 20...60 | (48...130 | 48...130 |

24...60 20...60 (1)

48...130 48...130 100...250 100...250

48...130 48...130

100...250 100...250

AF40 ... AF96 contactors are mainly used for controlling 3-phase motors and power circuits up

control circuit: AC or DC operated with electronic coil interface accepting a wide control voltage

range (e.g. 100...250 V AC and DC), only 4 control voltage ranges covering 24...500 V 50/60 Hz

- can withstand short voltage dips and voltage sags (SEMI F47-0706 conditions of use on request).

AF40-30-00-11 1SBL347001R1100

AF40-30-00-12 1SBL347001R1200

AF40-30-00-13 1SBL347001R1300

AF40-30-00-14 1SBL347001R1400

AF52-30-00-11 1SBL367001R1100

AF52-30-00-12 1SBL367001R1200

AF52-30-00-13 1SBL367001R1300

AF52-30-00-14 1SBL367001R1400

AF65-30-00-11 1SBL387001R1100

AF65-30-00-12 1SBL387001R1200

AF65-30-00-13 1SBL387001R1300

AF65-30-00-14 1SBL387001R1400

AF80-30-00-12 1SBL397001R1200

AF80-30-00-14 1SBL397001R1400

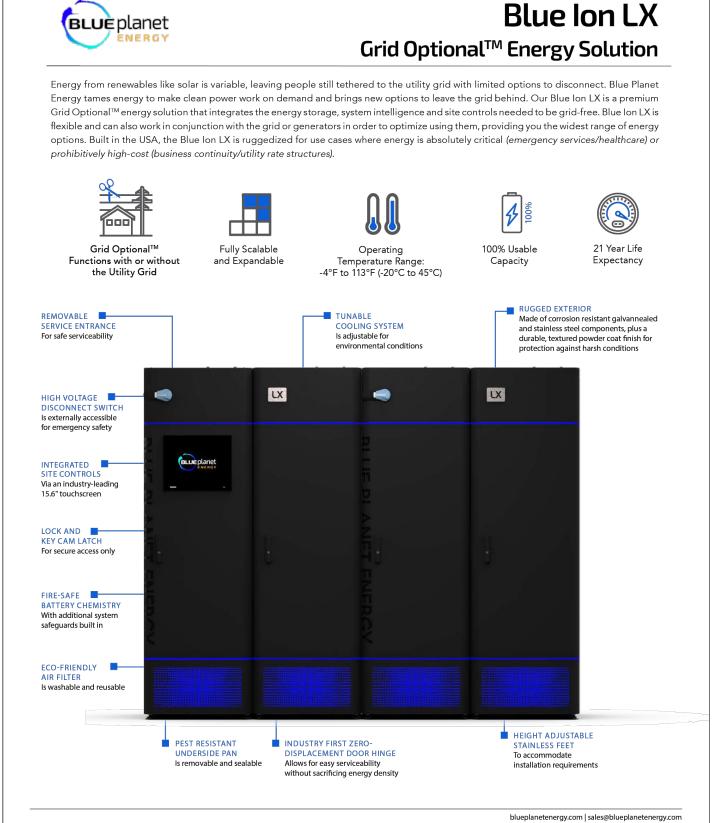
0 0 AF80-30-00-13 1SBL397001R1300

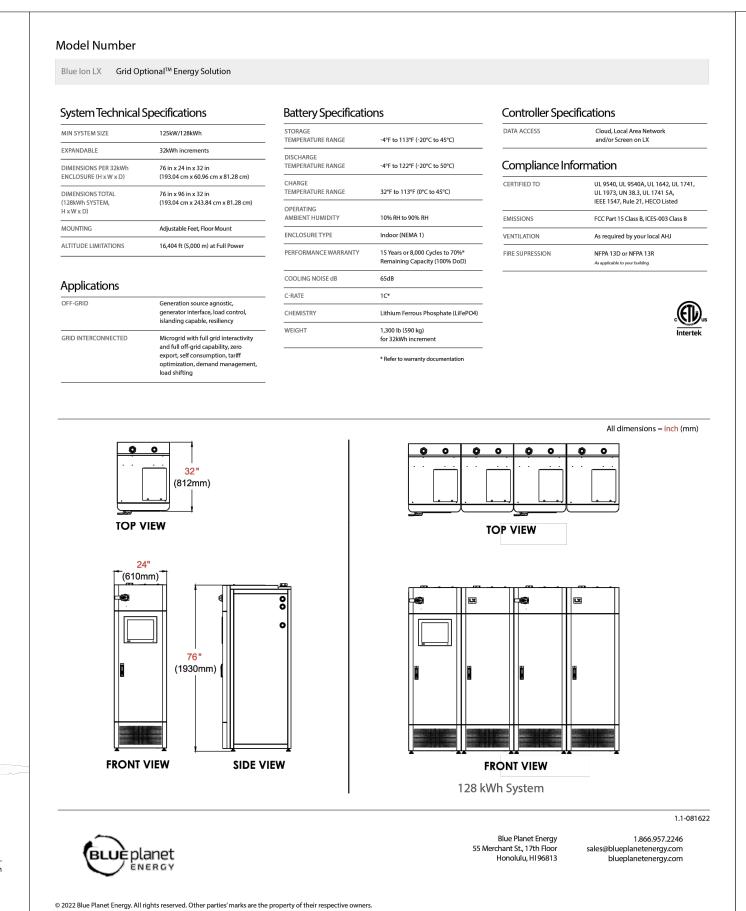
0 0 AF96-30-00-12 1SBL407001R1200

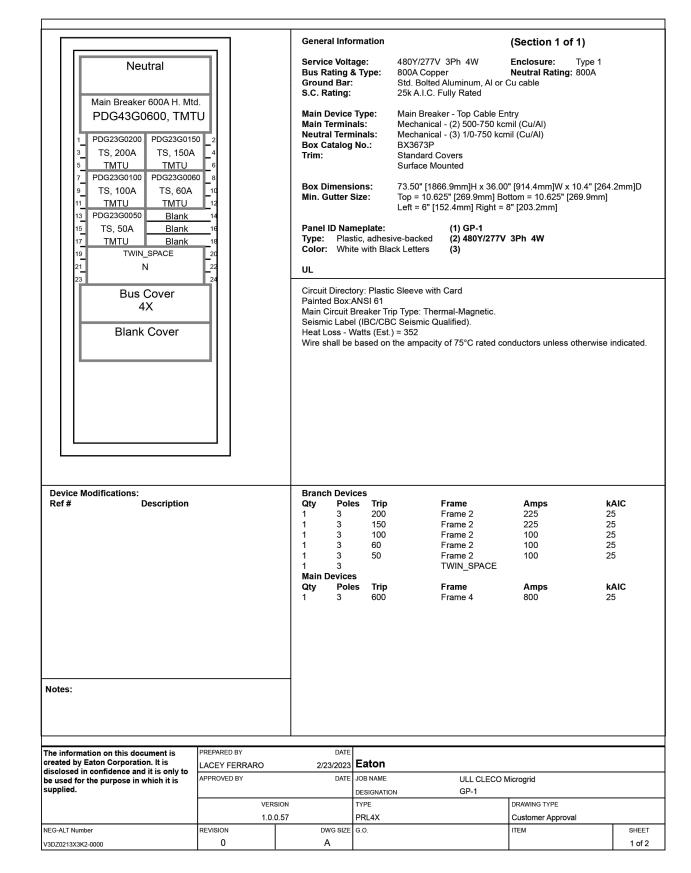
0 0 AF96-30-00-13 1SBL407001R1300

250...500 250...500 0 0 AF96-30-00-14 1SBL407001R1400

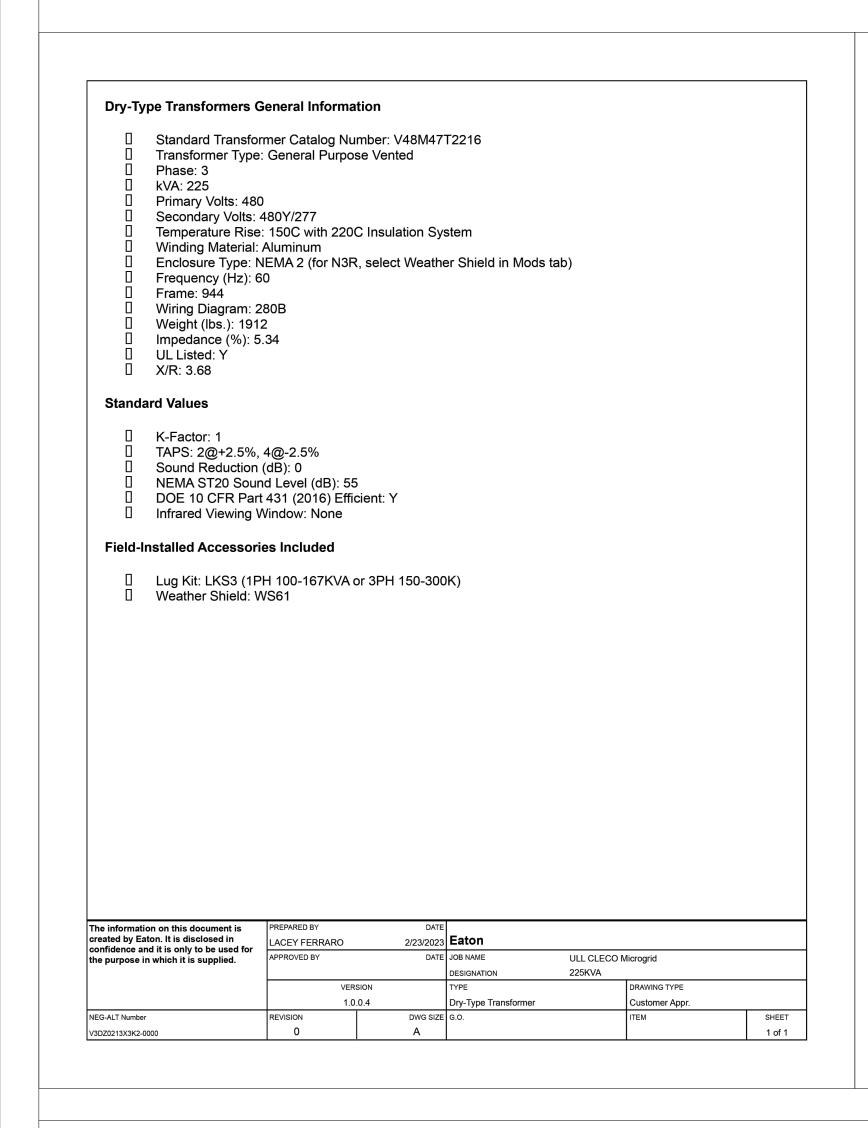
AF80, AF96

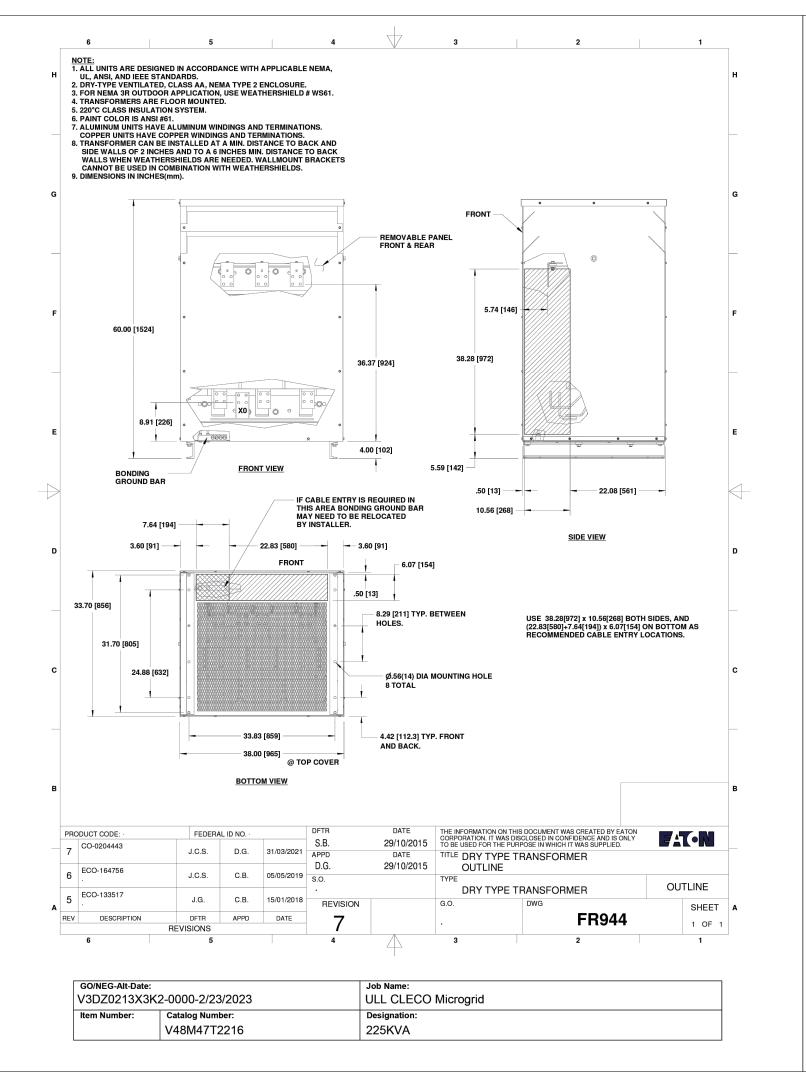

• add-on auxiliary contact blocks for front or side mounting and a wide range of accessories.

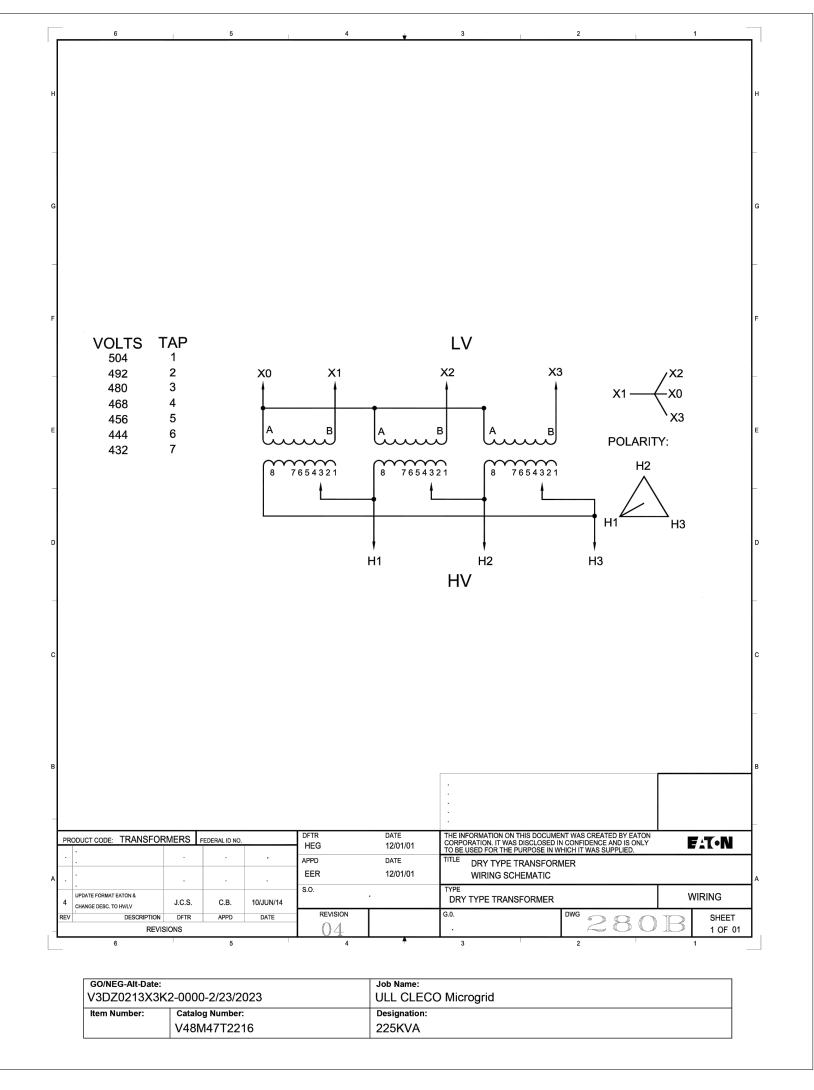

to 1000 V AC and 220 V DC. These contactors are of the block type design with 3 main poles.


AF40 ... AF96 3-pole contactors

18.5 to 45 kW


AC / DC operated





			POW-F	K-LINE4	X Device Specific	CaliONS	
Ckt #s Name	eplate		Device	Trip	Terminal	Modifications	
Main			PDG43G0600	600	(2) 500-750 kcmil (Cu/Al)		
1,3,5			PDG23G0200	200	(1) #4-4/0 (Cu/Al)		
2,4,6			PDG23G0150	150	(1) #4-4/0 (Cu/Al)		
7,9,11			PDG23G0100	100	(1) #14-1/0 (Cu/Al)		
8,10,12			PDG23G0060	60	(1) #14-1/0 (Cu/Al)		
13,15,17			PDG23G0050	50	(1) #14-1/0 (Cu/Al)		
19,20,21 22,23,24			TWIN_SPACE	50	None Available		
e information on this de	ation. It is	PREPARED BY	DATE 2/23/2023				
eated by Eaton Corpora sclosed in confidence a used for the purpose in	ation. It is	PREPARED BY LACEY FERRARO APPROVED BY	2/23/2023			CLECO Microgrid	
e information on this deated by Eaton Corpora sclosed in confidence a used for the purpose in pplied.	ation. It is	LACEY FERRARO APPROVED BY	2/23/2023 DATE	Eaton JOB NAME DESIGNATI	ULL C		
eated by Eaton Corpora sclosed in confidence a used for the purpose in	ation. It is	LACEY FERRARO APPROVED BY VER	2/23/2023 DATE	JOB NAME DESIGNATI	ULL C	DRAWING TYPE	
eated by Eaton Corpora sclosed in confidence a used for the purpose in	ation. It is	LACEY FERRARO APPROVED BY VER	2/23/2023 DATE	JOB NAME DESIGNATI TYPE PRL4X	ULL C		SHE

General Notes

MICROGRID SYSTEM
WITH GROUND MOUNT PV

TABLE OF CONTENTS PV-1.0 COVER PAGE PV-1.1 GENERAL NOTES PV-1.2 REFERENCE PV-2.0 SITE PLAN PV-3.0 SOLAR PLAN PV-3.1 STRING PLAN PV-3.2 SOLAR COMPONENTS PV-3.3 SOLAR COMPONENTS PV-3.4 SOLAR COMPONENTS PV-5.0 EQUIPMENT PLAN PV-5.1 PAD LAYOUT PV-5.2 PAD DETAILS PV-5.3 EQUIPMENT ROOM DETAIL PV-5.4 EQUIPMENT ROOM ELEVATION PV-5.5 EQUIPMENT ROOM ELEVATION PV-5.6 EQUIPMENT ROOM ELEVATION

PV-5.7 OUTDOOR WALL ELEVATION
PV-6.0 ELECTRICAL DIAGRAM
PV-7.0 ELECTRICAL CALCULATIONS
PV-8.0 COMMUNICATIONS DIAGRAM
PV-9.0 PANELBOARDS

PV-10.0 EQUIPMENT DATA SHEETS

	Revisions	
No.	Issue	Date
110822	REVIEW	
120222	REVIEW	
121222	REVIEW	
122022	REVIEW	
090823	BID SET	
092023	PAD UPDATE	

Project Name and Address

UNIVERSITY OF LOUISIANA AT LAFAYETTE-CLECO POWER 2008 HUTCHINSON AVE CROWLEY, LA 70526

Drawn By
Andrea Lee, Nick Boyd

Date
09/15/2022

Scale
N/A

POWERSCOUT[™] 48 HD

NETWORKED MULTI-CIRCUIT METERING REVENUE GRADE INSTRUMENTS FOR SUPERIOR ENERGY MEASUREMENT

APPLICATIONS

Tenant Submetering

FEATURES

Bi-Directional Metering

Real-Time Power Monitoring in Commercial, Retail, and Industrial environments

s voltage, current, power, energ

lowered: 90-600V Phase-to-Phase

and many other electrical parameters on

any combination of single and/or three-phase systems

Two independent voltage inputs allow the PowerScout HD meter to be used on two systems simultaneously

Revenue grade. ANSI C12.20-2010 Class

Available with UL 94-V0 enclosure or as

a circuit board on a mounting plate that helps facilitate easy, safe installation

Safest installation ever: High-Voltage Cover offers additional level of protect

The PowerScout HD uses both BACnet or Modbus protocol and features 2 digital pulse input ports. All models feature both

Floating Point: IEEE-754 data format

several revenue-grade options

PhaseChek confirms proper CT

UL Listed (enclosure version) or UL

CE Mark

Mix-and-match a full range of Split Core

or RōCoil® Rogowski-style CTs, including

Display shows real-time information about

the meter configuration and metered data

Recognized (plate and circuit board only

eliminates scaling factors

MAXIMUM FLEXIBILITY FOR MONITORING

The PowerScout 48 HD is a versatile, multi-channel instrument. The flexible design allows it to be configured for monitoring multiple electrical circuits. It can be supplied with any of DENT's internally-shunted, 333 mV output split-core or RōCoil CTs. Monitor any combination of up to 16 three-phase or 48 single-phase electrical devices with a single PowerScout HD. With data updates every 1 second and ANSI C12.20-2010 Class 0.2 revenue grade accuracy (depending on CT), the PowerScout 48 HD is well-suited for data center monitoring, tenant submetering, and for accountability metering in commercial, retail, and industrial facilities.

INDUSTRY-STANDARD MODBUS OR BACNET

The PowerScout 48 HD supports both Modbus (based on SunSpec IEEE-754) and BACnet communications protocols. Communications interface can be accomplished through standard serial RS-485 or Ethernet using either Modbus, BACnet MS/TP, Modbus TCP, or BACnet IP protocols. Additionally, the PowerScout 48 HD features two pulse inputs.

EASY INSTALLATION

Every PowerScout is line powered and designed to operate on any voltage from 90-600VAC. Unique to the PowerScout 48 HD are two independent voltage inputs, allowing for the monitoring of customer-derived voltage networks. Modbus & BACnet protocols are field-selectable and any combination of split-core or flexible RōCoil CTs can be used. Configure the meter prior to installation using the ViewPoint HD software utility and a direct USB connection or by using the built-in web server. Eliminate expensive trips back into the field: patented* PhaseChek™ ensures proper CT-to-phase installation the first time.

*U.S. Patent and Trademark Office Patent No. 7,612,552

POWERSCOUT[™] 48 HD KEY HARDWARE/SOFTWARE FEATURES

EASY DEPLOYMENT

Setting the PowerScout HD up for a new deployment has never been easier, thanks to two features:

Network Scan

Using ViewPoint HD Software, you can now quickly scan the local area network and find all the PowerScout HD meters installed on the network. The results page shows each meter's system description and even allows for some basic meter setup directly from the scan window. Use ViewPoint HD to give each meter a "friendly" name, such as "3rd Floor Utility Rm," to identify the right meter even faster.

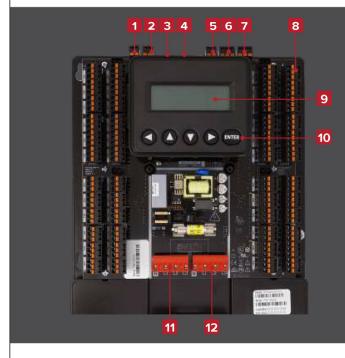
Pre-Configuration

Maybe you have several meters that need to be configured the same way. Or, maybe you don't have the meter in your possession, but need to configure it ahead of time for an installer. It is now possible to build a meter configuration file without having a meter connected. This is especially helpful for teams who handle configuration and installation in two separate steps.

INTERVAL DATA RECORDING & RTC

The PowerScout HD Series features interval data recording of kWh. The meter's non-volatile memory stores up to 63 days of 15-minute kWh data that can be downloaded in the event of lost communication with the RTU. The CSV data file can be quickly downloaded through a direct USB or Ethernet connection using ViewPoint HD software and can be used to backfill any missing data. This feature works automatically in the background to record data - no configuration necessary.

In addition, the PowerScout HD Series has a capacitor-backed real-time clock (RTC) that is used to ensure an accurate time stamp on all recorded data records. Unlike other systems, there is no battery to change and the capacitor retains calendar time for up to 1 week. The clock can be synchronized with the PC clock during meter setup.


PULSE INPUTS

Correlate the consumption of a variety of systems using the standard dry contact pulse inputs. Configure each of the input channels independently with customizable units of measure (i.e., gallons) within ViewPoint HD Software. The PowerScout HD pulse inputs are compatible with "low speed" meters. PowerScout 48 HD meters (hardware revision I and later) are equipped with two pulse inputs.

ALARMS

The PowerScout HD power meter has the ability to set alarms on any meter channel. Alarms can be set through ViewPoint HD software to be triggered by voltage and/or current over or under events. The persistence setting is also adjustable within the software to allow start-up on transients.

POWERSCOUT[™] 48 HD

- 1. Pulse Input 1 11. Voltage Input 1
- 3. Ethernet 12. Voltage Input 2 4. USB 13. Mounting Plate 5. 12V Out (2W) (Optional) 6. RS-485 14. High Voltage

2. Pulse Input 2

9. Display

Detailed information about the PowerScout HD meter hardware and ViewPoint HD Software can be found in the Operator's Guide.

- 7. Alarm Cover (IP30) 8. CT 15.1" EMT Conduit Connections (x48)
 - Connection 16. ABS Plastic Enclosure

POWERSCOUT™ 48 HD SPECIFICATIONS

TECHNICAL

OLSE INPOTS	transition time).
COMMUNICATION	NS
IARDWARE	RS-485, Ethernet, and USB (for configuration only)
SUPPORTED PROTOCOLS	Modbus RTU, BACnet MS/TP, Modbus TCP or BACnet IP
MAX COMMUNICATION LENGTH	1200 meters with Data Range of 100K bits/second or less
COMMUNICATION RATE (BAUD)	9600 (Default), 19200, 38400, 57600, 76800, 115200
DATA BITS	8
ARITY	None, Even, Odd
TOP BIT	2,1
EDIMINISTRAL	All controls of the second of

12-28 AWG 600 VAC, Voltage connection must be #14 AWG or larger & 600 VAC rated WIRE CONNECTIONS MOUNTING IP30. Available with PS48 Enclosure & Plate Models -20° to 60°C (-4° to 140°F)*** 5% to 95% non-condensing ABS Plastic, 94-V0 flammability rating. Connections: 1" EM (L) 33.7cm x (W) 25.1cm x (H) 8.0 cm (13.3" x 9.8" x 3.1") (L) 26.2cm x (W) 24.1cm x (H) 8.0 cm (10.3" x 9.5" x 3.1")

CERTIFICATIONS	
UL RECOGNIZED (E186827)	Applies to mounting plate and circuit board only version Conforms to UL Std 61010-1 3rd Edition Certified to CSA Std C22.2 No. 61010-1 3rd Edition
UL LISTED (E186827)	Applies to indoor enclosure version Conforms to UL Std 61010-1 3rd Edition Certified to CSA Std C22.2 No. 61010-1 3rd Edition
CE	EN 61000-6-4: Class A
ANSI C12.20 CLASS 0.2	NIST Traceable Calibration

OPERATING SYSTEM Windows® 10, Windows® 8, Windows® 7			
COMMUNICATIONS USB & Ethernet standard. One USB Port required on PC.			
SECURITY 2 levels of PIN protection (Read/Write or Read-Only)			
ODDEDING DVD.	T NI IMBEDS		
ORDERING PAR	T NUMBERS		
ORDERING PART	T NUMBERS POWERSCOUT 48 HD, WITH ENCLOSURE + DISPLAY		

POWERSCOUT 48 HD, MOUNTING PLATE, NO DISPLAY *At -20°C, LCD display could be illegible. Meter voltage @ -20°C must exceed 100 VAC to power the meter.

"Pulse Inputs on PS48 meters Rev I or later. ***Colder temperatures require higher voltage to power the met

DISTRIBUTOR:

Digital hput Digital Output Comm Port

F

DE DB DB DB DD DD D022 D021 D012 D011 A

\sqrt{51} \sqrt{51}

PV-5.2 PAD DETAILS PV-5.3 EQUIPMENT ROOM DETAIL PV-5.4 EQUIPMENT ROOM ELEVATION PV-5.5 EQUIPMENT ROOM ELEVATION

PV-5.1 PAD LAYOUT

MICROGRID SYSTEM

TABLE OF CONTENTS

PV-1.0 COVER PAGE

PV-1.2 REFERENCE

PV-2.0 SITE PLAN

PV-3.0 SOLAR PLAN

PV-3.1 STRING PLAN

PV-3.2 SOLAR COMPONENTS

PV-3.3 SOLAR COMPONENTS

PV-3.4 SOLAR COMPONENTS

PV-5.0 EQUIPMENT PLAN

PV-1.1 GENERAL NOTES

WITH GROUND MOUNT PV

PV-5.6 EQUIPMENT ROOM ELEVATION PV-5.7 OUTDOOR WALL ELEVATION PV-6.0 ELECTRICAL DIAGRAM PV-7.0 ELECTRICAL CALCULATIONS

5804 River Oaks Rd S

1-504-267-1660

Elmwood, LA 70123

General Notes

PV-8.0 COMMUNICATIONS DIAGRAM PV-9.0 PANELBOARDS PV-10.0 EQUIPMENT DATA SHEETS

Multifunction Power & Energy

ACCUENERGY

+ Available compatibility with

DESCRIPTION Designed for a wide range of standard metering projects, the Acuvim L is a costeffective, multifunction power meter that combines value and high-performance with easy integration into panel or device RTU, PROFIBUS, Modbus-TCP/IP, and BACnet-IP through optional expansion modules and revenue grade accuracy, the Acuvim L can be extreme protection in even the toughest

FEATURES

+ True RMS, revenue grade measurements: ANSI C12.20 class 0.5 & IEC 62053-22 class 0.5s

multiple CT output options including 5A, 1A, 333mV, and Rogowski coils + Multiple communication options including Modbus-TCP/IP, BACnet-IP, PROFIBUS, Modbus-RTU, I/O order, and monitor THD

+ Perform power quality analysis, measure individual harmonics up to the 63rd communications, and more + Three form factors: Panel + NEMA 3 front panel mount meter with digital protection for installation in display, DIN rail mount harsh environments transducer, or in a prewired, pre-configured panel

Acuvim L Series Multifunction Power & Energy Meter | Datasheet | 1

SPECIFICATIONS			
Metering			
PARAMETERS	ACCURACY	RESOLUTION	RANGE
Voltage	0.2%	0.1V	20V-1000kV
Current	0.2%	0.001A	0~50000A
Current Demand	0.2%	0.001A	0~50000A
Power	0.5%	1W	-9999MW~9999MW
Reactive Power	0.5%	1var	-9999Mvar~9999Mvar
Apparent Power	0.5%	1VA	0~9999MVA
Power Demand	0.5%	1W	-9999MW~9999MW
Reactive Power Demand	0.5%	1var	-9999Mvar~9999Mvar
Apparent Power Demand	0.5%	1VA	0~9999MVA
Power Factor	0.5%	0.001	-1.0~1.0
Frequency	0.05%	0.01Hz	45~65Hz
Energy	0.5%	0.1kWh	0~99999999.9kWh
Reactive Power	0.5%	0.1kvarh	0~99999999.9kvarh
Apparent Energy	0.5%	0.1kVAh	0~99999999.9kVAh
Harmonics	1.0%	0.01%	
Meter Running Time		0.01hrs	0~999999.99hrs
Load Running Time		0.01hrs	0~999999.99hrs
Meter Total Running Time		0.01hrs	0~999999.99hrs

DIGITAL INPUT

Input Resistance

Input Current (Max)

SOE Resolution

Voltage Range

Load Current

Output Frequency

Isolation Voltage

RELAY OUTPUT (RO

Contact Resistance

Isolation Voltage

Mechanical Life

Load Current

Set Time

Switching Voltage (Max)

Pulse Frequency (Max)

DIGITAL OUTPUT (DO) (Photo-MOS)

100Hz, 50% Duty Ratio

100mA (Max)

5A(R), 2A(L)

10ms (Max)

30mΩ (Max)

2500Vac

25Hz, 50% Duty Ratio

Input Type

Input	
CURRENT INPUTS (EACH CH	IANNEL)
Nominal Current Options	① 5A, ② 1A, ③ 1A(333mV), ④ 1A (100mV Rope- CT), ⑤ 1A(80mA/100mA/200mA),
Metering Range	① 0~10A, ② 0~2A, ③ 0~1.2A, ④ 0~1.2A ⑤ 0~1.2A, ⑥ 0~1.2A
Pickup Current	1) 5mA, 2) 1mA, 3) 5mA, 4) 5mA, 5) 5mA
Withstand	20A RMS continuous 100A RMS for 1 second, non-recurring
Burden	0.05VA (Typical) @ 5A RMS
Accuracy	0.2%

Accuracy	0.290
OLTAGE INPUTS (EACH	CHANNEL)
Nominal Full Scale	400Vac L-N, 690Vac L-L (+20%)
Withstand	1500Vac Continuous 2500Vac, 50/60Hz for 1 Minute
Input Impedance	2MΩ per phase
Metering Frequency	45Hz~65Hz
Pickup Voltage	10Vac
Accuracy	0.2%

ENERGY ACCURACY	
Active	Class 0.5s (According to IEC 62053-22) Class 0.5 (According to ANSI C12.20)
Reactive	Class 2 (According to IEC 62053-23)
HARMONIC RESOLUTION	
Metered Value	2 nd ~63 rd harmonics

ACCUENERGY

Acuvim L Series Multifunction Power & Energy Meter | Datasheet | 3

FUNCTION LIST

SPECIFICATIONS	
Control Power	
AC/DC CONTROL POWER	
Operating Range	100~415Vac, 50/60Hz; 100~300V
Burden	3W
Frequency	50/60Hz
Withstand	3250Vac, 50/60Hz for 1 minute
Installation Category III (Dist	ribution)
LOW VOLTAGE DC CONTRO	OL POWER (OPTIONAL)
Operating Range	20~60VDC
Burden	3W
Standard Compliance 8	Certifications
	Certifications
Measurement Standard	
•	
Measurement Standard	IEC 61036 Class 1, ANSI C12.16 Cl

Withstand	3250Vac, 50/60Hz for 1 minute		
Installation Category III (Dis	tribution)		
OW VOLTAGE DC CONTR	OL POWER <i>(OPTIONAL)</i>		
Operating Range	20~60VDC		
Burden	3W		
tandard Compliance 8 Measurement Standard	& Certifications IEC 61036 Class 1, ANSI C12.16 Class 10		
Environmental Standard	IEC 60068-2		
Safety Standard	IEC 61010-1, UL 61010-1		
EMC Standard	IEC 61000-4/2-3-4-5-6-8-11		
Outlines Ctondond			
Outlines Standard	DIN 43700, ANSI C39.1		

Line to Neutral Voltages Uln

Line to Line Voltages Ull

Power Demand, Powe

Meter Running Time

Predicted Demand

Real Time Clock

adaptive, up to 12M bytes: 32 50170 Vol. 2 -WEB (Optional Module) HTTP/HTTPs post, FTP post, SMTP, NTP, HTTPs webserver; 4GB Datalogging memory

Second RS-485 Port

(Optional Module

-25°C to 70°C -13°F to 158°F Operating Temperature -40°C to 85°C Storage Temperature -40°F to 176°F

Dower var 1, var 2, var 3, var tot Power va 1, va 2, va 3, va tot Iter PF 1, PF 2, PF 3, PF Iter L/C/R Iter Watt-hour Imp, Watt-hour Exp, Watt-hour Imp+Exp, Watt-hour Imp-Exp Iter Watt-hour Q1, Watt-hour Q2, Watt-hour Q3, Watt-hour Q4 Iter Var-hour Imp, Var-hour Exp, Var-hour Imp+Exp, Var-hour Imp-Exp Var-hour Q1, Var-hour Q2, Var-hour Q3, Var-hour Q4 Var-hour Q1, Var-hour Q2, Var-hour Imp+Exp, VA-hour Imp-Exp Iter VA-hour Imp, Watt-hour Exp, VA-hour Imp+Exp, VA-hour Imp-Exp Var-hour Q1, VA-hour Q2, VA-hour Q3, VA-hour Q4 Iter VA-hour Q1, VA-hour Q2, VA-hour Q3, VA-hour Imp Exp, VA-hour Imp Exp VA-hour Imp 1, Watt-hour Exp 1, Watt-hour Imp 2, Watt-hour Exp Iter Var-hour Imp 3, Watt-hour Exp 1, Watt-hour Imp 2, Watt-hour Exp 2, Var-hour Imp 3, Var-hour Imp 3, Var-hour Imp 2, Var-hour Exp 2, Var-hour Imp 3, Var-hour Exp 3 Iter Var-hour Imp 1, Var-hour Exp 1, Var-hour Imp 2, Var-hour Exp 2, Var-hour Imp 3, Var-hour Exp 3					
Power va 1, va 2, va 3, va tot tor PF1, PF2, PF3, PF re L/C/R F Watt-hour Imp, Watt-hour Exp, Watt-hour Imp+Exp, Watt-hour Imp-Exp Watt-hour Q1, Watt-hour Q2, Watt-hour Q3, Watt-hour Q4 var-hour Imp, Var-hour Exp, Var-hour Imp+Exp, Var-hour Imp-Exp Var-hour Q1, Var-hour Q2, Var-hour Q3, Var-hour Imp-Exp Var-hour Q1, Var-hour Q2, Var-hour Q3, Var-hour Q4 var-hour Imp, Va-hour Exp, Var-hour Imp+Exp, Var-hour Imp-Exp Var-hour Q1, Var-hour Exp, Var-hour Imp+Exp, Var-hour Imp-Exp Var-hour Imp 1, Watt-hour Exp 1, Watt-hour Imp 2, Watt-hour Exp Var-hour Imp 3, Watt-hour Exp 3 var-hour Imp 3, Var-hour Exp 1, Var-hour Imp 2, Var-hour Exp 2, Var-hour Imp 3, Var-hour Exp 3 var-hour Imp 1, Var-hour Exp 1, Var-hour Imp 2, Var-hour Exp 2, Var-hour Imp 3, Var-hour Exp 3 var-hour Imp 1, Var-hour Exp 3 var-hour Imp 3, Var-hour Exp 3	Active Power	watt 1, watt 2, watt 3, watt tot	•	•	•
tor PF 1, PF 2, PF 3, PF re L/C/R F Watt-hour Imp, Watt-hour Exp, Watt-hour Imp+Exp, Watt-hour Imp-Exp Watt-hour Q1, Watt-hour Q2, Watt-hour Q3, Watt-hour Q4 Par-hour Imp, Var-hour Exp, Var-hour Imp+Exp, Var-hour Imp-Exp Var-hour Q1, Var-hour Q2, Var-hour Q3, Var-hour Imp-Exp Var-hour Q1, Var-hour Q2, Var-hour Q3, Var-hour Imp-Exp Var-hour Imp, Va-hour Exp, Va-hour Imp+Exp, Va-hour Imp-Exp VA-hour Q1, Var-hour Q2, Var-hour Q4 Par-hour Imp, VA-hour Exp, VA-hour Imp+Exp, VA-hour Imp-Exp VA-hour Q1, VA-hour Q2, VA-hour Q4 Par-hour Imp 1, Watt-hour Exp 1, Watt-hour Imp 2, Watt-hour Exp Var-hour Imp 3, Watt-hour Exp 3 Var-hour Imp 3, Var-hour Exp 1, Var-hour Imp 2, Var-hour Exp 2, Var-hour Imp 3, Var-hour Exp 3 VA-hour Imp 1, Var-hour Exp 1, VA-hour Imp 2, VA-hour Exp 2, VA-hour Imp 3, VA-hour Exp 3	Reactive Power	var 1, var 2, var 3, var tot	•	•	•
F Watt-hour Imp, Watt-hour Exp, Watt-hour Imp+Exp, Watt-hour Imp-Exp Watt-hour Q1, Watt-hour Q2, Watt-hour Q3, Watt-hour Q4 Var-hour Imp, Var-hour Exp, Var-hour Imp+Exp, Var-hour Imp-Exp Var-hour Q1, Var-hour Q2, Var-hour Q4 VA-hour Q1, Var-hour Q2, Var-hour Q4 VA-hour Imp, VA-hour Exp, VA-hour Imp+Exp, VA-hour Imp-Exp VA-hour Q1, VA-hour Exp, VA-hour Imp+Exp, VA-hour Imp-Exp VA-hour Q1, VA-hour Q2, VA-hour Q4 Se Active Energy VA-hour Imp 1, Watt-hour Exp 1, Watt-hour Imp 2, Watt-hour Exp Var-hour Imp 3, Watt-hour Exp 3 Var-hour Imp 3, Var-hour Exp 1, Var-hour Imp 2, Var-hour Exp 2, Var-hour Imp 3, Var-hour Exp 3 VA-hour Imp 1, VA-hour Exp 1, VA-hour Imp 2, VA-hour Exp 2, VA-hour Imp 3, VA-hour Exp 3 VA-hour Imp 1, VA-hour Exp 3 VA-hour Imp 3, VA-hour Exp 3	Apparent Power	va 1, va 2, va 3, va tot	•	•	•
F Watt-hour Imp, Watt-hour Exp, Watt-hour Imp+Exp, Watt-hour Imp-Exp Watt-hour Q1, Watt-hour Q2, Watt-hour Q3, Watt-hour Q4 Var-hour Imp, Var-hour Exp, Var-hour Imp+Exp, Var-hour Imp-Exp Var-hour Q1, Var-hour Q2, Var-hour Q3, Var-hour Q4 VA-hour Q1, Var-hour Q2, Var-hour Q3, Var-hour Q4 VA-hour Imp, VA-hour Exp, VA-hour Imp+Exp, VA-hour Imp-Exp VA-hour Q1, VA-hour Q2, VA-hour Q4 See Active Energy Watt-hour Imp 1, Watt-hour Exp 1, Watt-hour Imp 2, Watt-hour Exp 2, Watt-hour Imp 3, Watt-hour Exp 3 Var-hour Imp 1, Var-hour Exp 1, Var-hour Imp 2, Var-hour Exp 2, Var-hour Imp 3, Var-hour Exp 3 VA-hour Imp 1, Var-hour Exp 3 VA-hour Imp 1, Var-hour Exp 3 VA-hour Imp 3, VA-hour Exp 3 VA-hour Imp 3, VA-hour Exp 3	Power Factor	PF 1, PF 2, PF 3, PF	•	•	•
Watt-hour Imp, Watt-hour Exp, Watt-hour Imp+Exp, Watt-hour Imp-Exp Watt-hour Q1, Watt-hour Q2, Watt-hour Q3, Watt-hour Q4 Var-hour Imp, Var-hour Exp, Var-hour Imp+Exp, Var-hour Imp-Exp Var-hour Q1, Var-hour Q2, Var-hour Q4 VA-hour Q1, Var-hour Exp, VA-hour Imp+Exp, VA-hour Imp-Exp VA-hour Imp, VA-hour Exp, VA-hour Imp+Exp, VA-hour Imp-Exp VA-hour Q1, VA-hour Q2, VA-hour Q4 See Active Energy Watt-hour Imp 1, Watt-hour Exp 1, Watt-hour Imp 2, Watt-hour Exp 2, Watt-hour Imp 3, Watt-hour Exp 3 Var-hour Imp 1, Var-hour Exp 1, Var-hour Imp 2, Var-hour Exp 2, Var-hour Imp 3, Var-hour Exp 3 VA-hour Imp 1, Var-hour Exp 3 VA-hour Imp 3, Var-hour Exp 3 VA-hour Imp 3, Var-hour Exp 3	Load Nature	L/C/R	•	•	•
Watt-hour Q1, Watt-hour Q2, Watt-hour Q4 Var-hour Imp, Var-hour Exp, Var-hour Imp+Exp, Var-hour Imp-Exp Var-hour Q1, Var-hour Q2, Var-hour Q4 VA-hour Q1, Var-hour Q2, Var-hour Q4 VA-hour Imp, VA-hour Exp, VA-hour Imp+Exp, VA-hour Imp-Exp VA-hour Q1, VA-hour Q2, VA-hour Q3, VA-hour Q4 Se Active Energy Watt-hour Imp 1, Watt-hour Exp 1, Watt-hour Imp 2, Watt-hour Exp 2, Watt-hour Imp 3, Watt-hour Exp 3 Var-hour Imp 1, Var-hour Exp 1, Var-hour Imp 2, Var-hour Exp 2, Var-hour Imp 3, Var-hour Exp 3 VA-hour Imp 3, Var-hour Exp 3 VA-hour Imp 1, VA-hour Exp 3 VA-hour Imp 1, VA-hour Exp 3 VA-hour Imp 3, VA-hour Exp 3	Frequency	F	•	•	•
Watt-hour Q1, Watt-hour Q2, Watt-hour Q3, Watt-hour Q4 Matt-hour Imp, Var-hour Exp, Var-hour Imp+Exp, Var-hour Imp-Exp Var-hour Q1, Var-hour Q2, Var-hour Q3, Var-hour Q4 VA-hour Imp, VA-hour Exp, VA-hour Imp+Exp, VA-hour Imp-Exp VA-hour Q1, VA-hour Q2, VA-hour Q3, VA-hour Imp-Exp VA-hour Q1, VA-hour Q3, VA-hour Q4 Se Active Energy Watt-hour Imp 1, Watt-hour Exp 1, Watt-hour Imp 2, Watt-hour Exp 2, Watt-hour Imp 3, Watt-hour Exp 3 Var-hour Imp 1, Var-hour Exp 1, Var-hour Imp 2, Var-hour Exp 2, Var-hour Imp 3, Var-hour Exp 3 VA-hour Imp 1, VA-hour Exp 1, VA-hour Imp 2, VA-hour Exp 2, VA-hour Imp 3, VA-hour Exp 3	Antina France	Watt-hour Imp, Watt-hour Exp, Watt-hour Imp+Exp, Watt-hour Imp-Exp	•	•	•
Var-hour Q1, Var-hour Q2, Var-hour Q4	Active Energy	Watt-hour Q1, Watt-hour Q2, Watt-hour Q3, Watt-hour Q4		•	•
Var-hour Q1, Var-hour Q2, Var-hour Q4 VA-hour Imp, VA-hour Imp+Exp, VA-hour Imp-Exp VA-hour Q1, VA-hour Q2, VA-hour Q4 VA-hour Q1, VA-hour Q3, VA-hour Q4 See Active Energy Watt-hour Imp 1, Watt-hour Exp 1, Watt-hour Imp 2, Watt-hour Exp 2, Watt-hour Imp 3, Watt-hour Exp 3 Var-hour Imp 1, Var-hour Exp 1, Var-hour Imp 2, Var-hour Exp 2, Var-hour Imp 3, Var-hour Exp 3 VA-hour Imp 3, Var-hour Exp 3 VA-hour Imp 1, VA-hour Exp 3 VA-hour Imp 3, VA-hour Exp 3 VA-hour Imp 3, VA-hour Exp 3	Described Francisco	Var-hour Imp, Var-hour Exp, Var-hour Imp+Exp, Var-hour Imp-Exp	•	•	•
Watt-hour Q1, VA-hour Q2, VA-hour Q3, VA-hour Q4 Se Active Energy See Reactive Energy See Apparent Energy VA-hour Q1, VA-hour Q2, VA-hour Q4 Watt-hour Imp 1, Watt-hour Exp 1, Watt-hour Imp 2, Watt-hour Exp 2, Var-hour Imp 3, Var-hour Exp 1, Var-hour Imp 2, Var-hour Exp 2, Var-hour Imp 3, Var-hour Exp 3 VA-hour Imp 3, Var-hour Exp 3 VA-hour Imp 1, VA-hour Exp 1, VA-hour Imp 2, VA-hour Exp 2, VA-hour Imp 3, VA-hour Exp 3	Reactive Energy	Var-hour Q1, Var-hour Q2, Var-hour Q3, Var-hour Q4		•	•
VA-hour Q1, VA-hour Q3, VA-hour Q4 se Active Energy Se Reactive Energy Se Apparent Energy VA-hour Imp 1, Watt-hour Exp 1, Watt-hour Imp 2, Watt-hour Exp 2, Watt-hour Imp 3, Var-hour Imp 2, Var-hour Exp 2, Var-hour Imp 3, Var-hour Imp 2, Var-hour Exp 2, Var-hour Imp 3, Var-hour Exp 3 VA-hour Imp 1, VA-hour Exp 1, VA-hour Imp 2, VA-hour Exp 2, VA-hour Imp 3, VA-hour Exp 3		VA-hour Imp, VA-hour Exp, VA-hour Imp+Exp, VA-hour Imp-Exp	•	•	•
se Active Energy 2, Watt-hour Imp 3, Watt-hour Exp 3 Var-hour Imp 1, Var-hour Imp 2, Var-hour Exp 2, Var-hour Imp 3, Var-hour Exp 3 Var-hour Imp 3, Var-hour Exp 3 VA-hour Imp 1, VA-hour Exp 3 VA-hour Imp 1, VA-hour Imp 2, VA-hour Exp 2, VA-hour Imp 3, VA-hour Exp 3	Apparent Energy	VA-hour Q1, VA-hour Q2, VA-hour Q3, VA-hour Q4		•	•
se Reactive Energy Var-hour Imp 3, Var-hour Exp 3 VA-hour Imp 1, VA-hour Exp 1, VA-hour Imp 2, VA-hour Exp 2, VA-hour Imp 3, VA-hour Exp 3 VA-hour Imp 3, VA-hour Exp 3	Single-Phase Active Energy			•	•
se Apparent Energy hour Imp 3, VA-hour Exp 3	Single-Phase Reactive Energy			•	•
mand. Current 1 Dmd. 2 Dmd. 3 Dmd. 4 Dmd. 1 Pre Dmd. 2 Pre Dmd.	Single-Phase Apparent Energy			•	•
	Current Demand, Current Predicted Demand	l 1_Dmd, l 2_Dmd, l 3_Dmd, l 4_Dmd, l 1_Pre_Dmd, l 2_Pre_ Dmd, l 3_Pre_Dmd, l 4_Pre_Dmd	•	•	•

Load Running Time Voltage/Current Wiring Each phase of V & I loss or error • 1MB Memory ACCUENERGY Acuvim L Series Multifunction Power & Energy Meter | Datasheet | 4

Year, Month, Date, Hour, Minute, Second

P_Dmd, Q_Dmd, S_Dmd, P_Pre_Dmd, Q_Pre_Dmd, S_Pre_Dmd

Uln 1, Uln 2, Uln 3, Uln avg

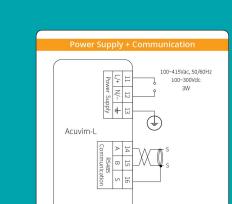
Ull 12, Ull 23, Ull 31, Ull avg

11,12,13,1n,14,1avg,1tot

WIRING DIAGRAMS

PROFIBUS-DP/V0 Protocol Works as PROFIBUS slave, baud rate Typical input bytes: 32, typical output

• • •


PROFIBUS standard according to EN Protocol: Modbus-TCP/IP, DNP3.0 over

Modbus-RTU Protocol

2-wire connection, Half-duplex, Isolated 1200 to 38400 baud rate

Option for Acuvim-CL, Acuvim-EL

5% to 95% Non-Condensing Function;
 Option;
 Blank NA Acuvim- Acuvim- Acuvim-BL CL EL

	Revisions			
No.	Issue	Date		
110822	REVIEW			
120222	REVIEW			
121222	REVIEW			
122022	REVIEW			
090823	BID SET			
092023	PAD UPDATE			

Project Name and Address

UNIVERSITY OF LOUISIANA AT LAFAYETTE-CLECO POWER 2008 HUTCHINSON AVE CROWLEY, LA 70526

Drawn By Andrea Lee, Nick Boyd Date 09/15/2022

N/A

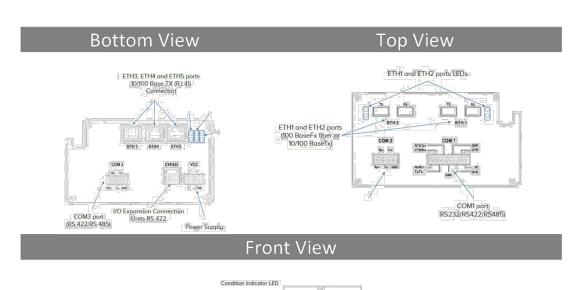
Scale

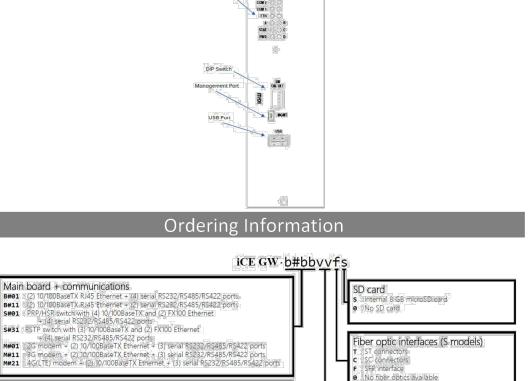
Sheet

Equipment Data Sheets


CONFIDENTIALITY NOTICE: These plans and any documents transmitted with them may contain PRIVILEGED or CONFIDENTIAL information and may be read or used only by the intended recipient. If you are not the intended recipient, please be advised that you have received this in error and that any unauthorized review, distribution, printing, or copying of these Plans or any attached files is strictly prohibited.

 IEC 62351 Cyber security compliance IEC61850-3 EMC compliant IEC61131-3 PLC automation programming IEEE1588 and NTP time synchronization


Bay Control Unit (BCU)


 Microseconds timestamp resolution and high Accuracy RTC with 1.5ppm time drift Two separate Ethernet interfaces with independent MAC address and multiple IP address configuration Internal switch with HSR/PRP/RSTP redundancy

ETAP iCE Gateway (GW) Specification

SMAART POWER

Microgrid Communication Signals

The following table shows the list of the monitored and controlled devices and the communication signals for each asset required for typical operation of microgrid controller. Alarms and additional signals will be also collected from each asset for monitoring and operation purpose but it is not required as part of the main operation of microgrid controller.

Asset	Controll ed	Monitor ed	Monitored Signals	Controlled Signals
Diesel Generator	Х	Х	V_mag	P_ref
Generalor			V_ang	Q_ref
			P or I_mag	Start/Stop
			Q or I_ang	
			Online Status	
			Isoc/Droop	Isoc/Droop
			Fuel Level	
			Fuel Cost	
			(To be Set by User)	
BESS	Х	Х	V_mag	P_ref
			V_ang	Q_ref
			P or I_mag	
			Q or I_ang	
			SOC	
			OprMode	OprMode Ref
			(Grid Following/Formin	(Grid Following/Forming)
			g)	
			Online Status	
PV	Х	Х	V_mag	P_ref
			V_ang	Q_ref

SMAART POWER LLC. CONFINDETIAL PROPERTY – 2023

SMAART POWER

Asset	Controll ed	Monitor ed	Monitored Signals	Controlled Signals
			P or I_mag	
			Q or I_ang	
			P_available	
			If curtailment is possible and required.	
			Online Status	
Load	Х	Х	V_mag	P_ref if controllable or shed- able
			V_ang	Q_ref if controllable or shed-able
			P or I_mag	
			Q or I_ang	
			Online Status	
PCC		X	V_mag	
			V_ang	
			P or I_mag	
			Q or I_ang	
			Online Status	
Circuit Breaker	X	Х	Status	Close/Open

SMAART POWER LLC. CONFINDETIAL PROPERTY – 2023

etap iCE RTUe

Remote Terminal Unit Expansion

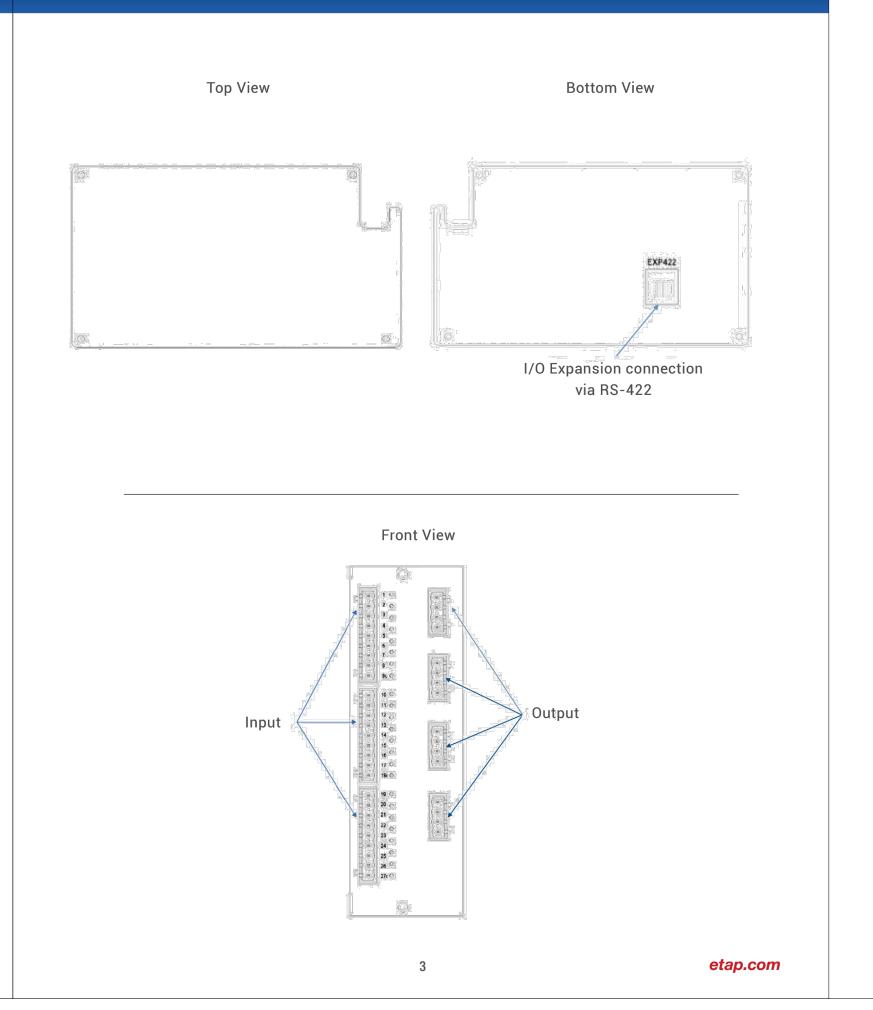
RTUe is an auxiliary unit for data collection or SCADA servers that allow expansion of acquisition and command capabilities to fit the requirements for many applications or facilities. Each I/O board is equipped with a RS-422 serial expansion port or a duel Ethernet ST/SC connector to communicate with data collection servers, SCADA servers, and other I/O modules. Both use Modbus with events stack and timestamps or IEC 61850 GOOSE messaging.

Features

- iCE RTUe-D1D1: 48 Digital Inputs
- iCE RTUe-D1R1: 24 Digital Inputs + 8 Relay Outputs
- iCE RTUe-D1A1: 24 Digital Inputs + 8 Analog Inputs (0-20mA)
- I/O Expansion

I/O Expandability

I/O modules includes a RS-422 serial port to communicate with etap iCE, any data collection server, or SCADA server using a RS-422 expansion port. Connection is established with a 6-pair flat cable RJ12 connector. Each I/O auxiliary unit includes up to two I/O cards. Available I/O module configurations:


- 48 Digital Inputs
- 16 Digital Outputs
- 24 Digital Inputs + 8 Digital Output
- 16 Analog Inputs
- 24 Digital Inputs + 8 Analog Inputs (0-20mA)
- Other configurations upon request

CPU Features 32 bits microcontroller @ 40MHz (1) Serial RS-422 port to connect to RTU & GW devices Communication Ports (RS-422 Expansion port) Isolation Activation/Deactivation ON when Vi>85%Vn OFF when Vi<60%Vn. Other levels upon request 9 pin MVSTBR 2.5. Grouping digital inputs in isolated blocks of (8) inputs & Connectors (1) common terminal Isolation 6kV rms Contact Dry 4 pin MVSTBR 2.5 Connectors Grouping relay outputs in blocks of 2 8A @ 220Vac. 8/0.3/0.12A @ 30/110/220Vdc **Breaking Capacity** 2.5kV rms Isolation 0.15% Accuracy 4 pin MVSTBR 2.5 Connectors Grouping analog inputs in blocks of 2 Ranges +/-20mA, +/-5mA, +/-10Vdc **Power Consumption** Less than 3W W: wide range, 32 - 250Vdc / 80 - 250Vac (2.5kVrms isolation) Power Supply 24: 19.5-60Vdc (2.5kVrms isolation) IEC 60950-1 IEC 60255-5:2000, EC 60255-22:2000, EN 55022 IEC 61000-6-4, IEC 61000-6-5, IEC 61000-4-2, IEC 61000-4-3, EMC Type Test IEC 61000-4-4, IEC 61000-4-5, IEC 61000-4-6, IEC 61000-4-8, IEC 61000-4-9, IEC 61000-4-10, IEC 61000-4-12, IEC 61000-4-16, IEC 61000-4-17, IEC 61000-4-18, IEC 61000-4-29 Operating temperature : -25°C to +70°C IEC 60068-2-1, IEC 60068-2-2, IEC 60068-2-3, IEC 60068-2-14, Environmental IEC 60068-2-30, IEC 60068-2-38 Vibration & Shock Test IEC 60068-2-6, IEC 60068-2-7 External dimensions: 173 x 137 x 78.4mm Physical

DIN rail mounting

etap.com

Specification Data Sheet

5804 River Oaks Rd S Elmwood, LA 70123 1-504-267-1660

General Notes MICROGRID SYSTEM WITH GROUND MOUNT PV

TABLE OF CONTENTS PV-1.0 COVER PAGE PV-1.1 GENERAL NOTES PV-1.2 REFERENCE PV-2.0 SITE PLAN PV-3.0 SOLAR PLAN PV-3.1 STRING PLAN PV-3.2 SOLAR COMPONENTS PV-3.3 SOLAR COMPONENTS PV-3.4 SOLAR COMPONENTS

PV-5.0 EQUIPMENT PLAN PV-5.1 PAD LAYOUT PV-5.2 PAD DETAILS

PV-5.3 EQUIPMENT ROOM DETAIL PV-5.4 EQUIPMENT ROOM ELEVATION PV-5.5 EQUIPMENT ROOM ELEVATION PV-5.6 EQUIPMENT ROOM ELEVATION PV-5.7 OUTDOOR WALL ELEVATION

PV-6.0 ELECTRICAL DIAGRAM PV-7.0 ELECTRICAL CALCULATIONS PV-8.0 COMMUNICATIONS DIAGRAM

PV-9.0 PANELBOARDS PV-10.0 EQUIPMENT DATA SHEETS

Revisions No. Date Issue 110822 REVIEW 120222 REVIEW 121222 REVIEW 122022 REVIEW 090823 BID SET PAD UPDATE 092023

Project Name and Address

UNIVERSITY OF LOUISIANA AT LAFAYETTE-CLECO POWER 2008 HUTCHINSON AVE CROWLEY, LA 70526

Drawn By Andrea Lee, Nick Boyd Date 09/15/2022

Scale